

Technical University of Denmark

Department of Informatics and Mathematical Modelling

Unified approach to
management of
distributed personal
information
Master Thesis (35 ECTS)

Author:
Piotr Szymaoski
s053750

Supervisors:
Jakob Eg Larsen
Michael Kai Petersen

 Kongens Lyngby 2010
IMM-MSC-2010-1

Abstract

Personal information is highly distributed between different data formats, applications, Internet

services, computers and devices. It is difficult to get an overview of what one already knows.

Popular personal information management (PIM) approaches usually provide yet another

isolated place where the data is kept. On the other hand, experimental approaches that allow for

accessing distributed information often do not provide sufficient means for integrating it.

The aim of this project is to develop a better understanding of how personal information

management can be improved by integrating information, organizing it through linking, tagging

and assigning meaning, and by supporting an individual way of working with it. Analysis of

problems and scenarios has led to the design of a model for managing diverse types of

information from various sources in a unified way. A prototype has been implemented based on

this model.

The proposed model has been evaluated on the basis of the capability to realize certain

scenarios, the functionality it provides and the potential to integrate with new technologies. It

was found that the model eliminates many PIM problems and provides the user with a central

place to store, organize and find their information.

Preface

This thesis was prepared at the Department of Informatics and Mathematical Modelling (IMM) at

the Technical University of Denmark (DTU) in partial fulfillment of the requirements for acquiring

the degree of Master of Science in Engineering (MSc).

This Master thesis is the result of work carried out in the period from July 2009 to January 2010

(including a summer break), with a workload equivalent to 35 ECTS credits.

Lyngby, January 2010

Piotr Szymaoski

Acknowledgments

I would like to thank all the people who have assisted me during the period of writing this thesis.

I would like to thank my supervisors – Associate Professor Jakob Eg Larsen and PhD Student

Michael Kai Petersen – for their time and support for this project. They provided me with

valuable ideas, discussions and feedback related to this subject and the work I have been doing.

I would also like to thank my girlfriend Jola for her support, ideas and patience in listening to my

loosely structured thoughts on the problems involved in this thesis.

Table of Contents

1. Introduction .. 1

1.1. Motivation ... 1

1.2. Problem definition .. 2

1.3. Contributions ... 2

1.4. Report structure .. 2

2. Analysis .. 4

2.1. Personal information ... 4

2.1.1. Definition ... 4

2.1.2. Characteristics ... 5

2.1.3. Sources .. 6

2.1.4. Metadata ... 7

2.1.5. Related problem domains ... 8

2.2. Commercial management approaches ... 10

2.2.1. Microsoft Outlook ... 10

2.2.2. Microsoft OneNote ... 10

2.2.3. Ecco Pro ... 11

2.2.4. Summary ... 12

2.3. Combining distributed information .. 13

2.3.1. Applications and concepts .. 14

2.3.2. Duplicated and fragmented information .. 15

2.3.3. Applications and data .. 16

2.3.4. Linking and annotating .. 17

2.3.5. Technical requirements ... 17

2.4. Representation and storage .. 19

2.4.1. Files and directories .. 19

2.4.2. Relational model ... 19

2.4.3. Object model ... 20

2.4.4. Associative model.. 21

2.4.5. RDF model ... 23

2.4.6. Summary ... 27

2.5. Summary ... 29

3. Use cases ... 30

3.1. Working on a project for a customer .. 30

3.2. Semantic notebook ... 32

3.3. Inviting people ... 35

3.4. Summary ... 36

4. Design .. 40

4.1. Data model .. 40

4.1.1. Application ... 40

4.1.2. Physical .. 43

4.1.3. Ontology .. 47

4.2. Presentation layer ... 52

4.2.1. Built-in views ... 54

4.2.2. Custom views... 59

4.2.3. View selection ... 61

4.2.4. Context menu .. 61

4.2.5. View editor .. 63

4.2.6. Ontology editor ... 63

4.2.7. Internationalization ... 64

4.3. Finding and managing information ... 65

4.3.1. Searching for objects ... 65

4.3.2. Related information .. 66

4.3.3. Unstructured information ... 67

4.3.4. Summarizing information .. 69

4.3.5. Tagging information .. 71

4.4. External information ... 72

4.4.1. Selecting information .. 72

4.4.2. Importing information ... 73

4.4.3. Synchronizing information .. 74

4.4.4. Exporting information ... 74

4.5. Synchronization ... 74

4.6. Sharing information ... 75

4.7. Summary ... 76

5. Implementation ... 77

5.1. Three-tier design ... 77

5.1.1. System components .. 77

5.1.2. Third-party components ... 78

5.2. Exchange of information ... 80

5.2.1. Retrieving objects .. 80

5.2.2. Querying for objects .. 81

5.2.3. Committing modifications ... 82

5.3. User interface .. 83

5.4. Limitations ... 85

5.5. Summary ... 86

6. Evaluation .. 87

6.1. Experimental difficulties.. 87

6.2. Scenarios ... 88

6.2.1. Working on a project for a customer .. 88

6.2.2. Semantic notebook ... 90

6.2.3. Inviting people ... 92

6.3. Functionality .. 92

6.3.1. Integrating information ... 92

6.3.2. Structured and unstructured information .. 94

6.3.3. Linking and finding information .. 94

6.4. Potential .. 96

6.4.1. Personal information domains .. 96

6.4.2. Social communication ... 96

6.4.3. Google Wave ... 97

6.5. Summary ... 98

7. Discussion .. 99

7.1. Alternative design decisions.. 99

7.1.1. Client-server interoperability .. 99

7.1.2. Physical data model... 100

7.1.3. Custom views as RDF ... 100

7.1.4. Data persistence .. 101

7.1.5. Partial loading of data ... 101

7.2. Third party components .. 102

7.2.1. Sesame .. 102

7.2.2. Hessian .. 103

7.2.3. Aperture .. 103

8. Related works .. 104

8.1. Haystack .. 104

8.2. Chandler .. 104

8.3. NEPOMUK .. 105

8.4. Summary ... 106

9. Conclusion ... 109

10. References ... 112

Appendix A .. 116

List of Figures

Figure 1: Ecco Pro's calendar view .. 12

Figure 2: A diagram of relationships between information sources ... 14

Figure 3: Table in the relational model ... 19

Figure 4: Items and links in tabular form. ... 22

Figure 5: Sample RDF graph .. 24

Figure 6: Conceptual illustration of the UI for the “Working on a project…” scenario 32

Figure 7: Conceptual illustration of UI for the “Semantic notebook” scenario 34

Figure 8: Objects and values ... 40

Figure 9: Persistent objects hierarchy ... 41

Figure 10: Classes for storing primitive values .. 41

Figure 11: Objects, properties and types .. 42

Figure 12: Type and property hierarchy .. 42

Figure 13: Equivalence and similarity for objects, types and properties .. 42

Figure 14: Diagram of all relationships owned by Properties and Types .. 46

Figure 15: UML class diagram for the Person type ... 48

Figure 16: UML class diagram for the Picture type ... 49

Figure 17: UML class diagram for the NotebookPage type .. 50

Figure 18: UML class diagram for the Location type ... 50

Figure 19: UML class diagram for the Photo Album type ... 50

Figure 20: UML class diagram for title properties ... 52

Figure 21: Equivalence relationship between title properties .. 52

Figure 22: UML class diagram for hierarchy of name properties.. 52

Figure 23: UML class diagram for View classes. .. 53

Figure 24: View properties .. 53

Figure 25: Diagram of the OutlineView ... 55

Figure 26: Diagram of a DesktopView ... 55

Figure 27: UML class diagram for TypedOutlineView items ... 57

Figure 28: Diagram of a TimelineView .. 59

Figure 29: Information fragments data model .. 68

Figure 30: Example property hierarchy and values... 70

Figure 31: Relations between picture properties. .. 70

Figure 32: Tags in RDF ... 71

Figure 33: Architecture diagram of the PIM system ... 78

Figure 34: Sequence diagram of requesting data from the server ... 80

Figure 35: Sequence diagram for the data commit process ... 82

Figure 36: Main window of client application ... 83

Figure 37: Client UI - context menu .. 84

Figure 38: Realization of the "Working on a project..." scenario using the prototype 89

Figure 39: Realization of the “Semantic notebook” scenario using the prototype 91

Figure 40: Client UI - a list of Person objects .. 116

Figure 41: Client UI - editing a note .. 117

List of Tables

Table 1: Summary of differences between commercial approaches .. 13

Table 2: Summary of differences between data models .. 28

Table 3: Mapping of Type and Property relationships to RDF .. 46

Table 4: A list of pre-defined custom views .. 61

Table 5: Summary of context menu actions .. 62

Table 6: Summary of differences between related PIM projects ... 107

1.1 Motivation| 1

1. Introduction

1.1. Motivation
In today’s world we are bombarded by digital information from all sides. We receive and share

information in the form of e-mails, instant messages, rich text, pictures, documents, music files,

etc. This happens all the time, whether we are at home, at school, at work, out on the town or on

holidays. We use a multitude of applications which enable us to work with this information. We

keep that information on different computers, mobile devices and on the Internet. As a result,

the information that we are interested in is highly distributed between formats, applications,

devices and locations.

The most important problems arising from the distributed nature of personal information are

described below.

Due to the significant number of different applications and devices that are used to handle

personal information, this information is highly fragmented (Karger, et al., 2006) and thus

difficult to work with. The pieces of information that a person needs to make a decision might be

scattered between different places: an email application, a social networking site, an address

book on a mobile phone, etc. Sometimes we know that we are in possession of some

information, but we abandon hope to find it as it requires too much effort (Teevan, et al., 2006).

At different times we may forget to use information even when (or sometimes because) we have

taken pains to keep it somewhere in our lives (Jones, 2005).

People try to unify fragmented information on their own. The most typical way is to use copy and

paste functionality to copy data from one place to another. However, this leads to the duplication

of information (Karger, et al., 2006). Duplicated information may quickly become inconsistent if

the user updates it in one place, but forgets to do it in the other. It is also quite cumbersome to

actually performs such updates. This often leads to a dilemma for users – which place should I

use for putting new information?

Another problem arising from the use of different systems is that it is often not possible to link or

reference information stored somewhere else (Jones, 2005). A picture stored in a disk file might

be associated with a person in an address book, but it is not usually possible to link those two.

Studies indicate that following links is the preferred method for finding information, rather than

jumping directly to the target (Alvarado, et al., 2003).

Users are also limited on the amount and type of information that applications allow them to

store. An application designed for managing pictures and galleries will not usually let the user

keep other data that one would associated with them – people, places, events, etc. – or will only

allow it to be stored in an unstructured form (i.e. a big text box).

Unstructured data is one that lacks semantics. It is only suitable for consumption by a human

being who can understand the information it contains. Machines cannot easily process this

information, which reduces the value that a computer system can add to it. For this reason,

information systems store data in a structured format wherever possible (Dittrich, et al., 2005).

Unfortunately, a lot of information that people produce is unstructured – e-mail messages,

2 | Introduction

documents, pictures, audio and video recordings – and poses problems for its automated

management.

Structured information, on the other hand, can be queried and viewed in different ways.

However, it is currently impossible to perform queries that would combine data from different

sources (Dittrich, et al., 2005). Such queries can reduce the amount of manual work that a user

would have to perform in order to answer a question like: What are the phone numbers of the

people that I am supposed to have a meeting with today? Existing applications also limit the user

with respect to the ways the information they contain can be viewed. They often provide just one

or a few different ways of presenting it. However, there are unlimited possibilities in which

different types of information can be visualized, especially if one takes into account related

information.

1.2. Problem definition
This thesis proposes a model which allows for unifying distributed information. Unification is

achieved by loosening the boundaries between different types of information and different

sources. The user should be able to interact with information in a similar way irrespective of what

it represents or where it comes from.

The thesis will try to find out how to improve personal information management through:

 integration of various sources of information, such as social networks, email, calendars,

documents, images, music files, etc.,

 allowing the user to store different kinds of new information,

 combining, linking, assigning meaning, tags or other metadata to information,

 organizing information into meaningful groups,

 presenting information in a way that is useful to the user, and

 sharing information with others.

During this project a prototype has been constructed with the intention of providing more

understanding and insight into these problems. The prototype is also used as a basis for

validating the model. However, it is not the aim of the prototype to conduct user experiments

with.

1.3. Contributions
As a result of this thesis, the following main contributions were made:

 A model enabling the unification of information available in different sources has been

designed.

 A method of reducing information fragmentation and duplication through defining

equivalent objects has been described.

 An approach to improving unstructured information management by extracting

meaningful fragments has been proposed.

1.4. Report structure
This report is divided into the following sections:

1.4 Report structure| 3

Analysis examines the theoretical problems involved in creating a personal information

management system that would realize the goals described earlier and proposes solutions to

these problems. Use cases investigates a few scenarios to see how PIM processes can be

improved. Design describes the essential elements for the PIM system and how they function

together. Implementation discusses some of the design decisions that were made while creating

the prototype, but which are not essential to the model of the system itself. Evaluation assesses

the suitability of the proposed model for solving the problems outlined above. Discussion

mentions technical problems that were encountered during implementation and alternative

design decisions that could have been made. Related works compares the model proposed in this

thesis to other academic approaches for solving similar problems. The last section, Conclusion,

summarizes the project and its findings.

4 | Analysis

2. Analysis
This section starts by discussing what personal information is, what are its characteristic features

and where can it be found. It continues with a description of three commercial applications for

personal information management. Next, an analysis is performed of how personal information

kept in different places can be combined together and what problems are associated with this.

Finally, a comparison of the suitability of various data models for storing personal information is

performed.

2.1. Personal information

2.1.1. Definition

Personal information, in popular understanding, is a term whose scope varies significantly from

person to person. For some, it represents any information that can be used to identify an

individual, such as a name or some government personal ID number. This kind of information is

usually associated with the problem of privacy and identity theft (Schoen, 2009). For others, it

includes information that one might keep in a paper organizer, such as a phonebook, a private

calendar or a to-do list (Teevan, et al., 2006 p. 42). Some make a clear distinction between

private and corporate or business-related information, and do not consider the latter “personal”

anymore. With the advent of web-based social networks, many people started to regard

information exchanged through them, such as photos, videos, links and comments, as personal,

as it relates directly to themselves or to their interests (Boyd, et al., 2007).

In fact, any kind of information that is somehow related to a person can be regarded as personal

information. This is described by Jones in (Jones, 2008), where he defines six (sometimes

overlapping) classes of information based on their relationship to a person, or “me”:

1. Information that is controlled or owned by me.

2. Information that is about me.

3. Information that is directed to me.

4. Information that is sent, posted or provided by me.

5. Information that has been already experienced by me.

6. Information that is relevant or useful to me.

In this project, I am particularly interested in the last class of information. This class can include:

 private or public information,

 information that is directly related to a person (such as a picture of someone), or related

through the interests of a person,

 information collected for one’s own private needs, or for professional reasons,

 information that is accessed from home, school or a work environment.

For the purpose of this paper, I will define personal information as any information that is of

importance to a person and which the person is interested in keeping track of, which is similar to

the definition given in (Larsen, 2005 p. 18).

2.1 Personal information| 5

2.1.2. Characteristics

As personal information is such a broad term, it is natural that it includes types of information

that differ substantially from one another. One can distinguish several dimensions along which

these types can be classified:

Frequency of use

According to (Cole, 1982), information can be classified into the following categories based on

the frequency with which the user refers to that information:

 Ephemeral (also called “action information”) - information which is used now or will be

used in the near future; it has a short life time.

 Working – information which is frequently used, such as personal work files.

 Archived – infrequently used information.

In a physical environment, ephemeral information might be stored on stick-it notes placed on a

user’s desk, where it is immediately available. Working information could be placed in a

document tray so that it could be retrieved quickly. On the other hand, archived information

would be put in binders located on a shelf or in a separate storage room, as it is only needed

from time to time. The same organization principle should be used in a personal information

management system.

Internal structure

The degree of internal structure determines whether a piece of information stored on a

computer is organized into a form suitable for processing by a program. Although personal

information is intended for consumption by a human user, it is beneficial when a computer

algorithm can be used for its processing. This enables executing structured queries against that

information, sorting it according to some property, and so on. For this reason, information

systems store data in a structured format wherever possible. (Dittrich, et al., 2005)

One can distinguish the following categories of internal structure:

 Unstructured – information that has no internal structure, such as a clear-text note. It is

difficult to automatically extract meaningful information from such data.

 Loosely structured – information that is generally unstructured, but which contains

embedded markers that allow for processing of certain pieces of it. An example of this

kind of information could be an HTML document using microformats (Micro09) – special

markup elements that identify specific kinds of data, such as people, events or

geographical locations, within the otherwise clear-text.

 Formally structured – information that is stored in a well-defined form, such as data in a

relational database. Every piece of information has assigned metadata specifying its

meaning – such as a field name or data type.

Topology

As personal information covers a broad range of subjects, the arrangement of relations between

pieces of information can also differ substantially. For example, people in an corporate

organizational structure can be arranged in a hierarchy, while the relations between friends in a

6 | Analysis

social network would rather resemble a mesh, where a person could be linked to any other. Not

all topologies are suitable for all kinds of information.

Type of medium

Personal information can include not only text-based data, but also images, audio and video.

Confidentiality

Information in a PIM system can be classified as private or public. This classification is mostly

unrelated to the type of information – for example, one appointment in a calendar can be

considered by the user as private, while another can be freely shared with friends or colleagues.

Source

Information can be available locally on a user’s personal computer, it can be stored on a

computer available through a network, or on a mobile device. It can also be available from an

Internet web service, such as Facebook1. The problem of multiple sources is discussed in more

depth in the following section.

2.1.3. Sources

Personal information can be found mostly anywhere. We keep it on our computers, mobile

devices and, in the recent years, increasingly on the Internet. The World-Wide-Web is evolving

from non-interactive websites to something that Tim O’Reilly called “Web 2.0”. This concept is

defined in terms of popular practices and certain principles, such as blogging, wikis, participation,

tagging and user contributions over personal webpages, directories and content management

systems (O'Reilly, 2005). The Web today is full of services that focus on social interaction and

collaboration in different contexts, for example:

 Blogs: Blogger, WordPress, Blogspot

 Communication: Google Talk, Twitter2, Jabber, Google Wave

 Social networking: Facebook, Orkut, LinkedIn, MySpace, Meetup.com

 Applications: Gmail, Google Docs, Google Calendar, Office Live

 Wikis: Wikipedia, Wikia

 Social news: Reddit, Digg

 Photo sharing: Flickr, Picasa, Photobucket

 Video sharing: Youtube

 Music sharing: Last.fm, Pandora, Grooveshark

 Virtual worlds: Second Life, Lively

As the popularity of those services increases, people use them to store and manage more of their

important personal information. In the past, we would store photos from trips in a photo album

on a shelf, or, since the advent of digital cameras, burn them on a CD and maybe publish to a

private web site for others to see; now we just upload them to Flickr or Picasa. Many people

don’t use an e-mail client anymore – all of their mail is kept on Gmail, Hotmail, or some other on-

line mail service. Remembering about friends’ birthdays? This is something that social networks

take care of.

1
 http://www.facebook.com/

2
 http://www.twitter.com/

http://www.facebook.com/
http://www.twitter.com/

2.1 Personal information| 7

The problem with those services today is that they resemble data silos – separate databases that

are in no way connected to each other. (Breslin, et al., 2008 p. 13) It is difficult or impossible to

access or refer to information that is stored in one site from another site. In order to get an

overview of all the people a person knows, it would be necessary to visit all social networking

sites the person is a member of. Some of the friends and colleagues might only be present on one

of those sites, while others could be a member of a few of them. As such, the user’s personal

information is scattered across different websites, with some of it being duplicated in many

places.

But even on a single computer, personal information is distributed among different applications.

We use one program for managing email, another for writing documents, and yet another for

planning and calendaring. It is often the case that information in one application relates in some

way to what is stored in another program. For example, a picture in an image gallery application

might depict a person whose description is kept in an address book application. However it is

usually not possible to create a link between these two information objects, so that the picture

could be retrieved from the address book entry and vice versa. In other cases, information is

duplicated or fragmented across applications: a calendar application often has an address book

of its own, and so does an e-mail client. It is therefore necessary to look in many places to get a

complete overview about a particular subject. This can also introduce other problems: “We may

change data in one place (perhaps a new married name in the address book) and fail to change it

elsewhere, leading to inconsistency that makes it even more difficult to find information” (Karger,

et al., 2006). This situation also often leads to a dilemma for the user: which application should I

use to store my information so that it will be easily accessible later?

2.1.4. Metadata

Finding the desired information that was once entered into a system is not easy. Larsen

described that there is an inherent dilemma to the problem of storing and retrieving information:

the more effort is spent on properly filing information, the easier it is to later retrieve it. Not all

users are willing to invest the time to file the information properly, especially since it is often

difficult to identify in advance which information will be needed in the future (Larsen, 2005 pp.

43-45).

However, using metadata can help in information retrieval without requiring too much initial

effort from the user. Metadata is extra information describing a piece of information stored in a

system. It could be the title of a song, the date when a picture was taken, or a person that is an

author of a document. Personal information is closely related to the user, meaning that the user

already possesses some knowledge about the piece of information they are looking for.

Metadata can therefore help in finding it.

Some metadata, such as types and links, is already kept as part of existing software systems

because it is an essential part of how they function. Other metadata, such as the one comprising

context, is usually available even though it is not normally recorded by a system. And yet another

type of metadata, such as tags, is not assigned automatically by a computer program, but can be

quickly and easily stored manually by the user.

8 | Analysis

Tags

Tags are single words that somehow describe a piece of information. It should be easy for the

user to come up with relevant tags just by thinking about what they associate the information

with in their minds. Every piece of information can be tagged with one or more words. In this

way, retrieving the information in the future would require the user to think about the possible

associations and then browsing through the information items that match those tags.

Context

Context is a property that applies especially to information gathered using a mobile device. In

essence, it is the situation and the surroundings in which the user is in along with their mobile

device, including the state of the user themself. According to Dey, “context is any information

that can be used to characterize the situation of an entity. An entity is a person, place, or object

that is considered relevant to the interaction between a user and an application, including the

user and application themselves” (Dey, 2000).

Context can include such information as the current time, geographical position, available

wireless networks, weather and temperature, movement velocity and acceleration, etc. A

sophisticated mobile device could be able to use those parameters to determine the

environment in which a user is in (driving a car, attending a university lecture, at work, outdoors

– street name, etc.) This information can be attached as metadata to objects created on a device

at a given time (photos, notes, messages, etc.) Finding information that is annotated with such

metadata would be much simplified for the user, who would just need to answer questions such

as: What were I doing? Where were I?

Links

Information stored within an existing software system is already interlinked with other pieces of

information. For example, an email client links messages to contacts (sender, recipients), to other

messages (threads), and to folders. Most software is limited in the types of links and the types of

information that can be linked together – e.g. it is usually not possible in an email client to link a

message to an arbitrary contact, only senders and recipients are permitted. Nevertheless, reusing

information contained in existing links can help the user in finding what they are looking for by

following links from one item to another.

Types

Another feature of information stored in existing systems is that it represents some particular

thing. A piece of data might be a picture, an email, a document or can represent a person, an

organization, or a place. Each piece of data usually has an associated type, which tells the

application how should it be treated. A set of types in an application can form a hierarchy – an

email could be a kind of document, a person and an organization could be a treated as a contact.

This hierarchy of types can then be leveraged when searching for information.

2.1.5. Related problem domains

According to Thomas and Jones, personal information management (PIM) is concerned with “the

methods by which individuals handle, categorize and retrieve information” (Jones, et al., 1997).

However this statement does not reflect the broad set of activities and problem domains that are

involved in managing one’s personal information. Some of them are listed below:

2.1 Personal information| 9

Information management

Information management deals with problems associated with structuring information, its

storage and retrieval. It is related to the following problems:

 choice of database models and systems,

 integration and interoperability between systems,

 defining taxonomies, ontologies and systems for classifying information,

 using machine learning and data mining to improve the quality of information.

Content management

User’s personal information is composed of various forms of data – documents, movies, pictures,

contact information, web bookmarks, etc. A personal information management system must

therefore, in some ways, resemble a Content Management System (CMS) such as the ones used

for publishing information on web sites. Such a system aids in storing, classifying and retrieving

data. Often these systems operate on the principle of the separation of content from its graphical

presentation. They let the user define a custom data model and a set of templates which can be

used to visualize the data corresponding to that model.

Time management

Time management includes the activities associated with keeping appointments and dividing

time between different tasks that need to be performed. It involves the problems of effective

reminding about upcoming events, prioritizing tasks so that a person is not overwhelmed by the

amount of work that needs to be done, and at the same time making sure they are accomplished

before deadline.

Contacts management

Contacts management involves storing information about people and organizations and the ways

they can be contacted.

Communication

This problem involves using different channels of communication (such as email, instant

messages, phone calls, text messages, or even status updates on social networks) and managing

information exchanged through these channels.

Psychology

The differences between individual human beings in their approach to organizing

information have a profound impact on the PIM domain. Research by Malone (Malone,

1983) identified two distinct styles in which people organized their offices – a “neat” style,

where the flow and location of documents is structured (e.g. from an in-basket to an out-

basket, optionally through a “hold” tray), and a “messy” style, where documents are stacked

into many piles with the most recently used located on top. Obviously, any PIM system will

have to take such individual differences into account.

But research into human psychology is important also in other areas, such as problem-solving,

decision-making, and categorization. For example, work on project such as “plan my wedding”

can be viewed as an act of problem-solving and folders created to hold supporting information

may sometimes resemble a partial problem decomposition (Jones, 2005 p. 20)

10 | Analysis

Group information management

Personal information management involves communication and cooperation with other people.

The term group information management (GIM) is used by Erickson to describe the problem of

how personal information is shared with a group, emphasizing the norms that underlie that

sharing, as well as the ways participants negotiate these norms in response to the tensions that

sharing inevitably produces (Erickson, 2006).

2.2. Commercial management approaches
The following section describes three applications that have been on the market for a significant

amount of time and represent different approaches to managing personal information.

2.2.1. Microsoft Outlook

Microsoft Outlook is one of the most popular applications in the class of personal information

managers offering the calendar-contacts-todo’s functionality. This group also includes Lotus

Organizer, Novell Evolution, and others.

Microsoft Outlook can be used to manage e-mail messages, contacts, calendar events, tasks (to-

do items) and short textual notes. These items can be placed into folders, such as Inbox, Address

book, or Calendar. The application provides the user with a very typical interface for working with

these kinds of information, and it therefore feels familiar to new users. As such, it is an example

of a desktop approach (Larsen, 2005 pp. 82-84).

However, the structure of data that can be stored in Outlook is very rigid and inflexible.

Organizing items into folders means that any item can only be stored in a single folder. The user

is also limited to working with only those information types that the application supports, such as

contacts and calendar events. It is not possible to manage any other information. Moreover, it is

difficult to quickly store any additional information in a structured way. Most of the time users

have to rely on a generic “notes” or “description” field for storing such information. Similarly, it is

not easy to organize information by linking it together. For example, putting a link to a to-do item

in a calendar event does not automatically create a reciprocal link, and specifying an additional

date for a contact (such as another type of anniversary) does not make it appear in the calendar.

Finally, linking external information can be problematic, as the application will try to embed files

instead of linking to them.

2.2.2. Microsoft OneNote

Microsoft OneNote (Microsoft) is a note-taking application that is part of Microsoft Office and

was first released in 2003. It uses the metaphor of a tabbed notebook for its user interface. This

metaphor also dictates how the data is organized: all user-created content in OneNote is placed

on pages, which are organized into sections and notebooks. Pages can be used for writing text,

creating tables and bulleted lists, placing files, images and screenshots from other applications

and drawing with simple vector graphics.

OneNote makes it easy to create a note in a similar way as one would jot something down on a

piece of paper. For example, one can use OneNote to take a screenshot of a different application,

draw arrows pointing to various places in the screenshot and add some explanatory text; or to

paste an excerpt from a web page and use “electronic marker pens” to highlight the important

2.2 Commercial management approaches| 11

fragments. As these kinds of tasks can be accomplished relatively quickly, it makes the

application useful for people making a lot of notes.

A notebook page is the equivalent of a piece of paper, however the individual elements of the

page are still separate. It is possible to move them around on the page, or to drag them over to

another page. Elements can be marked with customizable tags (which actually do not resemble

tags in the sense they were described in Section 2.1.4, but rather categories), such as “idea”,

“important”, “note to self”, which can help in finding them later through the Search feature.

The application suggests two strategies for creating new notes: either use the so-called Unfiled

Notes section for creating a draft note and later deciding where to put it, or to create a new page

in an already existing section. Either way, moving pages from one section to another or

reorganizing entire sections can be done by dragging.

Microsoft OneNote provides the user with good functionality for storing different types of

information, and has some support for incorporating information from different sources (such as

local files and directories, but also web content). The main drawback of the application is that it

only supports unstructured information, which means that it is not possible to automatically

extract and reuse certain pieces of it. It is also not possible to view this information in any other

way than as notebook pages. The information stored in OneNote lacks meaning to a computer.

2.2.3. Ecco Pro

Ecco Pro is a personal information manager that was originally developed in 1993 by Arabesque

Software and later purchased by NetManage, Inc. The application has been discontinued in 1997

and later released as freeware. It has managed to acquire a devoted group of users who try to

create patches and extensions to the software, even though the source code has never been

released. (Dohmann)

Ecco Pro is an application that offers a great deal of flexibility to the user in terms of data storage.

By default, it aids in managing calendar events, to-do items and contacts (called phonebook

entries), but it can be also used to store many kinds of other information and to view it in

different ways.

All information stored in Ecco can be regarded as being placed in a single big table. The table

contains boolean columns specifying whether an item is an appointment, a to-do item, a

phonebook entry or if it belongs to some other, possibly user-defined, category (called folder in

Ecco terminology). The table also contains columns for every possible type of value that can be

associated with an item. New columns may be created by the user, if needed. For example,

appointments have start dates and end dates, to-do items have due dates and phonebook entries

hold telephones, addresses, names and birthdays. As all the columns belong to the same table, it

is possible for a single item to be associated with many folders. Effectively, Ecco Pro’s data model

can be considered an attribute-oriented approach, as described in (Larsen, 2005 pp. 92-96).

The information in Ecco is presented to the user through views, which are user interface

elements specialized for displaying certain kinds of information. There are three types of built-in

views available in Ecco: calendar, phonebook and notepad.

12 | Analysis

The calendar view employs the metaphor of a personal organizer (see Figure 1) to give the user

an overview of upcoming appointments and other important events. The user is presented with a

day planner on which the duration of appointments occurring on a given date is marked. A list of

ticklers is also shown. It typically includes to-do items which have been defined and await

completion, but can also display important occasions (such as Mother’s day, holidays, etc.) and

birthdays of contacts from the phone book. In general, the ticklers list contains a list of all items

which have dates that coincide with the current day. In this respect, data in Ecco is unified – the

application treats all types of items in the same way. The flexibility of this approach is well

illustrated by this example: it is enough to define an Anniversary field of type date for phonebook

entries and assign a value for a particular entry for it to be displayed in the ticklers list.

Figure 1: Ecco Pro's calendar view

Ecco gives the user the possibility of defining their own data structures for storing information

that was not foreseen by the program authors. Its main drawback, apart from the dated user

interface and discontinued development, is the very limited possibility of linking and including

external information.

2.2.4. Summary

The three applications described above represent three different approaches to managing

personal information. The table below provides a summary of these approaches:

 Microsoft Outlook Microsoft OneNote Ecco Pro

Data organization Desktop approach Tabbed notebook Attribute oriented

Internal structure Structured Unstructured Structured

Multiple views Yes (limited) No Yes

Linking No Yes No

Annotating Categories Categories Additional folders

Unification of data No n/a Yes

2.3 Combining distributed information| 13

Table 1: Summary of differences between commercial approaches

A lot of research into flexible data models and organization schemes is being conducted, as

exemplified by the projects described in Section 7.1 (Related works). It is driven by the premise of

giving the user the power to organize their data in the way they want to. Only Ecco Pro’s data

model supports defining new types of data and modifying existing ones. This is also the only

model that allows for different types of information to be treated in a similar way by the

application. The user can view different types of items on a single list and use different UI’s

offered by the program to interact with that data. In comparison, Microsoft Outlook lets some

data to be viewed in different ways (e.g. calendar entries in a calendar view or as a list), but it

does not allow mixing of types.

On the other hand, Microsoft OneNote shows that flexibility can be also achieved by simply

allowing only unstructured information, which the user can organize through bulleted outlines,

notes and pages. Unfortunately, such an approach eliminates the possibility of viewing the

information in different ways – it is all flat text. It is also impossible to talk about unification of

data in this context. All information is already treated by the application in the same way – the

only way it can be.

All three approaches are lacking in terms of grouping and annotating information. In Outlook,

items can be assigned to one or more categories. In OneNote, notes can be annotated by using

“tags”, which are functionally identical to Outlook’s categories (i.e. one must create them

beforehand, and not type them when needed). Ecco Pro lets the user put an item into multiple

folders. Only OneNote supports some form of linking – it is possible to create a link to a text

fragment or to a whole page or section. However, it would be difficult in all of these applications

to fulfill the individual needs of different users.

2.3. Combining distributed information
It was mentioned earlier that personal information tends to be highly distributed among different

applications, computers, mobile devices and web services. However pieces of information stored

in different places are usually related to each other. They can represent similar types of

information, and can either extend or duplicate the user’s knowledge about some things. Let us

analyze some possible relationships between an e-mail client, a calendar application, local disk

files and a social networking website (such as Facebook):

14 | Analysis

Social website

E-mail client

Local files

Calendar

Person

Email Message

Event

Document

Image

ToDo Task

Figure 2: A diagram of relationships between information sources

An email client basically handles two types of information: email messages and contacts in the

address book. A contact usually represents a person, which is also the central type of information

for social networks. Social websites typically let people share messages, pictures and events

between their friends. Events and persons are also central to calendar applications, where an

event involving some specific persons can be called an appointment. Images can be shared

through a social website, but they are also found as files on the user’s computer.

2.3.1. Applications and concepts

The example applications from the previous section make use of concepts that represent things

which exist in the real world, such as persons, appointments, places or projects. These are

concepts that a user would mentally associate with information available through an application,

even if the application assigns a very specialized meaning to them, such as contact, calendar

event, geographical coordinates, etc.

Many applications are capable of handling information that represents the same concepts. For

example, both an email client and a calendar use the concept of a person, either as

representation of a sender/recipient of an email, or as an entity that can be associated with

appointments. The person concept also plays a key role in social networks.

Other applications process information that is related to certain concepts, but the applications

themselves have no special means of handling them as separate entities. Unlike an email client,

where persons are presented as contacts, an image viewer might have no way of specifying that

a picture depicts a person. The user could write the persons’ names in a generic description field

2.3 Combining distributed information| 15

for the picture, but this would make it impossible for a computer program to process this

information as it would be unstructured.

Some concepts are not directly related to the information that a given application is concerned

with. In the user’s mental model, things relate to each other in complex ways. These relationships

are usually not captured by applications, which only have a limited view of the “big picture”. A

spreadsheet document might be a part of a project involving many people who exchange email

messages and have meetings with each other. In that example, the concept of a project is

external to all the applications involved: an email client deals with emails, an office productivity

suite allows for editing documents, a calendar application can be used for planning

appointments. The applications can store some of the user’s knowledge, while other parts need

to be remembered by the user themself. Moreover, one might imagine that a user would like to

store more information than these applications allow for – write notes about a meeting, mark

things as “to-do”, etc.

2.3.2. Duplicated and fragmented information

The concepts described in the previous section can be seen as a high-level representation of

information that is stored in various sources – a representation that is meaningful for the user. In

a computer system, information is usually stored in the form of data accessible by applications.

Applications are designed to fulfill a certain purpose – handle email, organize pictures, play music

– while interoperability and exchange of data with other applications are usually not the key

functions. As such, it is not easy to reuse information that has been stored using another

application. Information relating to the same real world object might therefore be spread out

across a number of applications, where each of them holds only a portion that is relevant to the

application’s function. On the other hand, the same information might be stored in many

applications, however not necessarily in the same form.

Karger and Jones describe some existing approaches to dealing with this problem in (Karger, et

al., 2006). In the simplest case, the user can get an overview of all information about an object by

opening many applications and viewing them in windows, side by side. One can also copy-and-

paste textual information from one application to another. In those two cases no permanent links

between the information objects are established and the user would have to manually repeat the

operation every time. More advanced approaches involve grouping similar objects based on

metadata (ID3 tags, file metadata), as implemented in Google Desktop and Yahoo Desktop.

They also describe the Universal Labeler (Jones, et al., 2005) prototype, which allows the user to

copy information from various application into the Labeler, where it can be organized as the user

sees fit, while keeping links back to the original applications.

In order to solve the problem of duplicated and fragmented information, objects in different

applications which represent the same real world object should be represented as a single entity.

This single entity would replicate the user’s mental model of such information. Creating such an

entity would involve:

 Identifying application objects that represent the same real world objects and merging

them together, creating a union of information available through different sources.

 Identifying and removing duplicate information.

16 | Analysis

However, it is not enough to just create such a combined representation. Any changes to this

new object need to be propagated back to the original applications, and vice versa.

In practice, even merging information from two objects is a complex task. In particular:

 Merging objects requires duplicate information that would allow them to be identified as

a single entity. For example, a person’s name should appear in both objects.

 The fact that two strings are equal doesn’t imply that they represent the same piece of

information. For example, two people might have the same date of birth. This suggests

that only certain types of information should be used for comparison.

 Unrelated similarities might occur even among types of information that qualify for

comparison. For example, two different people might have the same name, even though

names in general are used for identification. On the other hand, matching personal

identification numbers (such as social security numbers, etc.) or even email addresses

could be a strong indicator of a correct match.

 Duplicate information may be represented in different forms. For example, a name of an

organization might be written as “DTU” or “Danmarks Tekniske Universitet”.

An automatic process that gradually resolves simple matches between objects and uses them to

infer more complex ones is described in (Dong, et al., 2005). However, any automatic process can

introduce errors. The user would have to be able to review the automatic changes and optionally

correct or undo them.

2.3.3. Applications and data

As has been shown in the previous sections, many applications make use of the same concepts.

However, are the representations of concepts in different applications compatible with each

other? For example, will a person always be represented in all applications by a name, which is a

text string, a birthday (a date), and a photo (an image). When one thinks of a person, we

naturally associate these kinds of properties with that concept. Similarly, a photo album will, in

general, be a collection of pictures, a calendar event will have a title and a date, an email

message will have a sender, recipient, subject and a body, and so on. It is therefore reasonable to

assume that different applications will have a similar representation of the same concept,

because this is what the user expects. Some observations follow:

 Some concepts will always have a certain base set of properties (e.g. name, sender,

collection of pictures, etc.) A specific application, however, might be able to process a

richer set of properties.

 Some properties will always have a fixed data type (a name is always a text string, a date

of birth is a date, an email sender could be a person, organization or possibly a computer

program).

 Some properties might contain various types of data (an email body could be text, a

picture or an attachment).

As such, it is possible to construct a common representation of a concept shared by many

applications and populate it with data from those applications. This common representation will,

however, have to be the lowest common denominator of the information contained in various

sources. This is because the different applications, and the PIM application itself, won’t be able to

2.3 Combining distributed information| 17

handle specialized types of content. For example, a picture gallery might contain a vector-based

drawing which will have to be converted to a bitmap image (losing some of the inherent

information), so that it can be displayed in an application that has no notion of vector graphics.

This problem is mentioned by Karger and Jones: “Using a common denominator is, however, in

tension with each application’s need for rich, specialized representations of its content. Rich

representations let applications deliver powerful domain-specific operations.” (Karger, et al.,

2006). It is important that a system for managing personal information would not “reinvent the

wheel”. It should not provide functionality that already exists in other applications. Instead, it

should direct the user to a suitable application where a given task can be completed. The PIM

system should be limited to combining, linking and viewing information in ways that the original

applications do not support. Other reasons for limiting the functionality include:

 Existing applications are designed to perform certain functions and they can do them

well.

 People are used to their applications. They won’t abandon their e-mail client just so that

they can annotate emails with extra information.

 Rewriting existing applications to add a information management features is a waste of

time.

2.3.4. Linking and annotating

As stated by Vannevar Bush, the human mind operates by association of thoughts. Every object in

a person’s mind is always linked to other objects and concepts (Bush, 1945). A system for

managing personal information should therefore make it possible for the user to link information

in various, non-predefined ways, as this would be a natural process for the user. In the context of

distributed personal information, this means that it should be possible to link information

originating from different sources as if it were stored in a single place. For example, a user might

decide to link an MP3 file with a picture on Picasa and a friend on Facebook, because the song

reminds him of an evening they spent together. Such an association in a person’s mind can bring

back memories, and a similar approach can be implemented in an application: when viewing the

details of a particular piece of information, the user might be given the opportunity to explore

the relations it has to other information. By following links from one piece of information to

another, the user might be able to find what he or she is looking for. Studies indicate that users

prefer this behavior – i.e. navigating in small steps – than jumping directly to the target

(Alvarado, et al., 2003). Moreover, most users will be familiar with the way that such a system

works – it is a typical method of retrieving information in a hypertext system, such as the World

Wide Web.

2.3.5. Technical requirements

In order to combine distributed information there are a few requirements for a system that

would make this possible.

First of all, there needs to exist a common way to address objects from different sources. “As

with grouping and annotation, linking requires only a shared namespace with which to name the

linked objects and a common syntax for describing the relationship between them.” (Karger, et

al., 2006). If one looks at a computer system as a whole, there are multiple naming schemes in

use by applications, operating systems, networks and services. Some of them are clearly visible,

18 | Analysis

such as the file and directory hierarchy of a filesystem, the Universal Naming Convention (UNC)

for accessing resources in Microsoft Windows networks (Microsoft), or the Uniform Resource

Locator (URL) for addressing resources accessible over the Internet (Berners-Lee, et al., 2005).

Others are application-specific and not easily accessible from the outside: “different applications

insist on managing collections of their own information in their own “internal namespaces,” files

go into file folders, email messages into email folders, Web references into bookmark folders

accessed through Web browsers, and address book entries into address book folders.” (Karger, et

al., 2006).

As such, there is no single “universal” namespace that would be understood by all components of

a computer system. A new namespace could be created, or an existing namespace could be

reused for this purpose. The best candidate for this is the URI namespace used on the World-

Wide-Web, not only due to the sheer number of resources that are already accessible using this

scheme, but also because it is possible to construct globally-unique names (Berners-Lee, et al.,

2005 p. 20).

Secondly, a way to list, read, write and delete objects from different sources is needed. This

requires a separate data interface layer for each application – one which would either use the

application’s API, if available, or operate on the application’s data files directly. The data interface

would have to implement the following functions:

 Conversion between the PIM system namespace and the application’s internal

namespace for addressing objects. This is needed so that modifications to an object done

in the PIM system can be propagated back to the owning application, and vice versa.

 Discovery of new, modified and deleted objects. As the external application has no

knowledge of the existence of the PIM system, it cannot notify it that a change has

occurred. The data interface layer has to keep track of all objects and scan for

modifications. This kind of approach is implemented in the Aperture framework (Ape09).

Finally, as the PIM system is intended to help manage information and not replace application-

specific functionality, a way to quickly open an external application for editing a specified object

from within the PIM system is needed. In case of most web applications, the PIM system just

needs to direct the user to a specially crafted URL - no special support from the web application is

usually needed. On the other hand, desktop applications need to have built-in support for this

kind of functionality. For example, an e-mail client might accept an identifier of an e-mail to be

opened as a command-line argument.

Moreover, it should be possible to open the PIM system from within a third-party application to

manage a specific object. This, however, might require modifications to the application itself. In

case of web applications, a browser plugin might be constructed that offers to open the PIM

system when it detects that a user is viewing a certain object - for example, by analyzing the

active URL. Some desktop applications also support a plugin architecture, which would make a

similar solution possible. In case of other closed-source applications, it might not be possible to

implement this kind of functionality at all, as only the application’s author could introduce such

modifications.

2.4 Representation and storage| 19

2.4. Representation and storage
Personal information comes in many shapes and sizes. It can include primitive data such as plain

text, numbers and dates, more complex forms such as e-mails, phone book entries and rich text

(e.g. HTML or word processor documents). It can also include multimedia content like images,

audio and video. Some data may be stored locally on a computer, while other may be accessible

over a network. Combining such a wide range of data types in a single system requires a choice

of a suitable data model.

2.4.1. Files and directories

In the simplest case, one can use the computer’s file system to directly store personal

information: files would store data about some subject, while directories would be used to group

them together. Although simple to implement, this approach has many drawbacks. First of all,

standard text files are flat – they don’t have any internal structure which would allow for storing

complex information. The user may store information about person A and person B in completely

different ways. As such, text files are usable only by humans – it is difficult for a computer

program to process their contents, and what follows, to perform more complex queries than a

simple full-text search. Moreover, the hierarchical way of organizing files into directories is only

suitable for certain types of information - those which naturally possess a tree structure. For

others it will cause difficulties for the user to choose one of equivalently valid dimensions as the

one that should be used for grouping. Finally, a file system has no means of referencing

information located on the Internet, which means that it cannot be (e.g.) grouped into

directories.

2.4.2. Relational model

The relational model is the most widespread model for storing information in use today. It has

become nearly synonymous with the notion of a database. It was first proposed by E. F. Codd of

the IBM Research Laboratory in San Jose in 1970 and is based around the concept of a relation

(usually called a table), which holds an unordered set of tuples (rows). Each tuple in a relation has

exactly the same structure and is composed of attribute (or column) name-value pairs. In

essence, a relation in the relational model describes a table composed of rows and columns. Each

column has a name and an associated data type (such as an integer, string, date, etc.), while each

row holds values for those columns (see Figure 3).

A B C D

Field Field Field Field

Field Field Field Field

Field Field Field Field

Field Field Field Field

Columns

Rows

Figure 3: Table in the relational model

The approach for storing data in this model is to create a separate table for each type of

information to be stored. For example, information about people is stored in a Persons table,

20 | Analysis

while descriptions of photos could be put in a Pictures table. In order to link photos to the people

that are depicted in them, a third linking table would be created.

Storing personal information in a relational database provides some significant advantages over

the use of plain text files. The most important one is structure: every piece of information is

stored in a field, which has a corresponding name and data type, belongs to a row and to a table.

Because of that, it is possible to process the information using a computer algorithm. Moreover,

the relational model specifies a language, called the Structured Query Language (SQL), which

makes it possible to query the database about certain pieces of information – e.g. list the names

of persons that live in Copenhagen and are 25 years old. Another advantage is the possibility of

linking related information together through the use of foreign keys, which are references

between rows in (usually different) tables. Finally, the popularity of the relational model

translates into a wide availability of efficient and mature tools supporting it.

Despite its advantages, the relational model has some considerable drawbacks in the context of

storing personal information. They originate mainly from its rigid structure:

 The structure of personal information evolves over time, while the relational model

requires that it remains relatively fixed. For example, if a user decides to change the way

they describe pictures, then the structure of the Pictures table needs to be modified,

which in turn requires that all previously described pictures to be adapted to the new

format. A single table cannot have two separate structures.

 It is difficult to add information to some rows in a table and not to others. For example,

to store a bank account number in connection with just a single person will require the

addition of a new column to a table, which is a cumbersome solution as it will only be

used once.

2.4.3. Object model

The object model is an approach to organizing information that is used in the object oriented

programming (OOP) paradigm, which became popular in the 1990s with the advent of such

languages as C++ and Java. Most of the unique features of this model, such as encapsulation,

abstraction and polymorphism, are of particular interest to programmers, as they make it easier

to understand and manage the structure and relationships within the program, and also provide

means for reuse of existing functionality, which results in less duplicated code.

An object is a data structure containing data-carrying fields and methods (program logic) that

operate on this data. In principle, the data contained in an object should only be exposed to the

outside world through the object’s methods. In this way, the object is responsible for maintaining

the integrity of its data.

The structure and functionality of an object is determined by its class. It specifies the fields that

comprise an object along with their data types, and the methods that define the actions that an

object can perform. An object that belongs to a certain class is called an instance of that class.

Classes can be derived from one another through inheritance. When a child class (subclass)

inherits from its parent (superclass), it adopts the fields and methods of its parent. For example,

Garfield is an instance of Cat, which is a subclass of Animal.

2.4 Representation and storage| 21

In some respects, the object model is similar to the relational model. Instead of creating a table,

one can create a class. Objects can be thought of as just rows in a table. But the object model

provides some useful features in terms of personal information management:

 Inheritance allows for the creation of more general or more specialized types to store

information as needed. For example, a Document class may specify a Title and Author

fields, while a subclass called BlogEntry would add an Url field.

 Multiple inheritance, a more robust form of inheritance that is not so widely supported,

allows a single class to inherit from multiple other classes at the same time. It makes it

possible to combine many simple classes to form a complex one. For example, a Picture

class might inherit from a Document class (Title, Author), an InternetResource class (Url)

and a Commentable class (a class of objects that can store textual comments about

themselves).

 Linking objects together is as simple as specifying that a class should have a field whose

type is another class. A Person might have a Photo field of type Picture.

Still some of the drawbacks of the relational model apply also to this one. The object model also

introduces a few problems of its own:

 The object model provides no generic way of querying data. As the data within an object

is only exposed through its methods, there is no way to ask specific questions about it.

Some object-oriented databases support a query language, but no dominant standard,

similar to SQL, exists.

 The popularity of the object oriented programming did not translate into the popularity

of object-oriented databases. In practice, most computer software uses a relational

database as a way of storing object oriented data. Such a solution requires an additional

layer which translates the object data into relational form, and vice versa, leading to

problems collectively described as the object-relational impedance mismatch.

2.4.4. Associative model

The associative model of data, as described by Williams in (Williams, 2000), is substantially

different from the record-based models such as the ones described above. In this model, all

information is stored in the form of items (or “entities”) and links (or “associations”). An item is

anything that has a discrete, independent existence, while a link is a thing whose existence

depends on one or more other things (Williams, 2000 p. 84). In practice, an item can represent a

person, a book, a geographical location. A link will usually be a property linking two items, such as

“name” (a property of a person), “location” (an association between a physical object and a

geographical location), etc. Strictly speaking, an item is composed of a unique identifier, a name

and a type. A link contains its own unique identifier and three other identifiers: of a source, verb

and target, all of which can point to either an item or another link.

For example, storing the following information:

John meets with Mark in the student pub on Monday at 12:00.

would involve the following items and links:

22 | Analysis

John meets with Mark

 … in the student pub

 … on Monday

 … at 12:00.

In the above notation, the first link has the verb “meets with”, which connects the source and

target “John” and “Mark”, respectively. In this case, the source, verb and target are all items. The

second link has the first link as the source and uses the verb “in” and the target “the student

pub”, and so on.

The same information can be presented along with the unique identifiers in this way:

Items

Identifier Name

I1 John

I2 meets with

I3 Mark

I4 in

I5 the student pub

I6 on

I7 Monday

I8 at

I9 12:00

Links

Identifier Source Verb Target

L1 I1 I2 I3

L2 L1 I4 I5

L3 L2 I6 I7

L4 L3 I8 I9

Figure 4: Items and links in tabular form.

The above example shows that with the associative model it is possible to store information

without specifying any predefined structure, such as a database schema. In this model, a type

system is a feature that can be used whenever necessary, however it is not required. The type

system makes it possible to group entities that have similar associations together and to specify

which associations should we expect from a particular entity, along with some more additional

properties:

John is a Person

Person has (first name String)

Person has (birthday Date)

Person has (parent Parent) cardinality 2

In the above example, we state that any entity of type Person (such as John) has first name,

birthday and parent associations. We also specify the types of their targets. Moreover, we are

saying that each Person must have exactly two Parents.

Types can form hierarchies, where each type can be a subtype of one or more supertypes -

similar to the object model’s multiple inheritance. A subtype inherits all the associations of its

supertypes and their supertypes.

Parent is subtype Person

2.4 Representation and storage| 23

As can be seen from the examples above, the schema is defined in terms of the same items and

links as ordinary data. This makes it possible to manipulate the schema in the same way as

normal data, and even combine it with normal data. From the software developers point of view,

it reduces the amount of work that is required to create an application with a user-modifiable

schema, as the same code and user interface elements that are used for interacting with normal

data can be used for working with the schema.

People accustomed to the relational model might find this way of storing information odd, but

Williams argues that it resembles reality more closely than what can be accomplished in other

models. For example, the typical way to represent a customer in an application would be to

create a separate Customer table, in which every row would have an independent existence and

would be related to other information through foreign keys. However, a customer is not an

independent entity – it is just a role that one associates with a person or company in some

particular context; someone else might consider the same person to be a supplier or an

employee, etc. (Williams, 2000 pp. 87-90)

The associative model is a powerful model that is well suited for storing personal information.

One of its main advantages is the ease with which links can be created. The ability to create links

between any two items is inherent to the model and is not a consequence of some particular

database design, as is the case with the relational model. Here the user can freely link items

without being restricted by the possible cases that were foreseen (or not) by the designer of the

data model. Moreover, in the associative model the subject of a link is not restricted to just

items, but can include other links, giving the user even more freedom. Such freedom is important

from the personal information management point of view, as in the human mind associations

between thoughts can be formed in complex ways (Bush, 1945).

The primary drawback of the associative model is its poor adoption. It is difficult to find any

implementations of an associative database except for Sentences (Lazysoft), developed by

LazySoft - the company associated with Williams.

2.4.5. RDF model

The Resource Description Framework (RDF) is a language designed for expressing information

about resources that can be identified on the World Wide Web. It is part of World Wide Web

Consortium’s (W3C) vision of the Semantic Web, in which computers will be able to understand

the contents of the data put on the web in order to perform the more tedious tasks which now

need to be handled manually by humans (World Wide Web Consortium, 2001). Even though this

goal is still far from being realized, the activities of W3C in this area have resulted in the creation

of a few technologies useful for information management purposes.

Information in RDF is expressed in the form of statements. Each statement is a triple composed

of a subject, a predicate and an object, similar to a natural language. For example, in natural

language the following triple:

http://www.dtu.dk/ was created by Technical University of Denmark .
(subject) (predicate) (object)

states that the creator of the given webpage is the Technical University of Denmark. However,

for this statement to be understandable by a computer program, the natural language elements

http://www.dtu.dk/

24 | Analysis

need to be replaced by machine-processable identifiers. In RDF, resources about which

statements are made are identified using Uniform Resource Identifiers (URIs). As anyone can

construct a globally unique URI3, it is easy to provide unique names for things that are both

available on the World Wide Web and real world objects, such as people. To express the previous

triple in machine-readable form, we could say:

<http://www.dtu.dk/> <http://purl.org/dc/elements/1.1/creator>

“Technical University of Denmark” .

This triple refers to a special creator URI that is part of the Dublin Core Metadata Initiative

(DCMI) terms (DCMI) – a standardized vocabulary for expressing certain properties of documents.

All RDF statements can be presented in an equivalent form as graphs. The graph in Figure 5

illustrates a set of three triples, which state that http://www.dtu.dk/ has a creator whose name is

“Technical University of Denmark” and which is based near “Kongens Lyngby, Denmark”:

http://www.dtu.dk/

Technical University of
Denmark

http://purl.org/dc/elements/1.1/creator

http://xmlns.com/foaf/0.1/name

Kongens Lyngby,
Denmark

http://xmlns.com/foaf/0.1/based_near

Figure 5: Sample RDF graph

Schemas and ontologies

RDF by itself can be used to express simple statements about resources, similar to those

presented above. However, much of the power of RDF comes from the ability to create and use

ontologies. An ontology is a standardized vocabulary of terms and logical relationships within a

knowledge domain.

A standardized vocabulary allows different parties to agree on the same language to use when

exchanging data. As we have seen above, an ontology for describing documents (DCMI) lets us

specify that some object is a creator of a document, with the meaning of the term “creator”

being exactly defined in the ontology as “An entity primarily responsible for making the resource”.

Figure 5 makes use of another ontology, called Friend-of-a-Friend (FOAF), which lets us express

information about names and locations of objects in a way that will be understood by others. In

terms of personal information management, having a standardized vocabulary means that data

from third-party applications and web services can be easily accessed when it is exposed in RDF

form.

3
 A unique URI can be constructed by registering a domain name and using it as the base for the address.

http://www.dtu.dk/
http://purl.org/dc/elements/1.1/creator
http://www.dtu.dk/

2.4 Representation and storage| 25

The ability to define logical relationships makes it possible to capture some of the knowledge

associated with a domain so that it can be applied automatically by a computer program. The

types of logical rules that one may define depend on the ontology language that is used. One of

such languages is RDF Schema. It provides a vocabulary for describing classes of resources,

properties and relations between them in a way that resembles the object model of data (i.e.

with inheritance). With RDF Schema one can state that, for example, a Dog is a subclass of

Animal and it has a property Fur color.

Another set of languages for authoring ontologies is called the Web Ontology Language (OWL).

These languages are more expressive than RDF Schema and allow for specifying such aspects as

transitive, symmetric or inverse properties, the cardinality of relationships, equivalence of classes

and properties and identity of individuals. For example, OWL makes it possible to define a

property “is a friend of” to be symmetric, which means that if John is a friend of Peter, then,

automatically, Peter is a friend of John.

Today, according to the Swoogle home page, there exist thousands of ontologies for describing

different things. They are tracked and indexed by specialized websites and search engines, such

as:

 SchemaWeb (http://www.schemaweb.info/default.aspx) ,

 DAML Ontology Library (http://www.daml.org/ontologies/), and

 Swoogle (http://swoogle.umbc.edu/).

Some interesting ontologies include:

 Friend of a Friend (FOAF) – a vocabulary for describing people and the links between

them (http://www.foaf-project.org/),

 Dublin Core Metadata Terms – a vocabulary for describing digital content (images,

videos, sounds, documents, text, etc.),

 Personal Information Model (PIMO) – NEPOMUK project’s vocabulary for expressing

personal information of individuals.

Serialization, stores and querying

RDF triples can be stored in many different formats. The most popular of these is RDF/XML,

which is simply an XML syntax for RDF data. In this paper, however, most RDF examples are given

in the Turtle (Terse RDF Triple Language) form, which is more compact. In Turtle, every statement

is written as a subject, predicate and object, separated by spaces and terminated by a full-stop

(“.”). A subject and predicate can be either a full URI enclosed in angle brackets (e.g.

<http://www.dtu.dk>) or a namespace-qualified node (e.g. dc:Title). An object can be written in

the previous two forms, or as a literal enclosed in quotation marks (e.g. “Technical University of

Denmark”). For example:

<http://www.dtu.dk> dc:Title “Technical University of Denmark” .

http://www.schemaweb.info/default.aspx
http://www.daml.org/ontologies/
http://swoogle.umbc.edu/
http://www.foaf-project.org/

26 | Analysis

Serialization formats are mostly used for the exchange of RDF data between different systems.

Internally, triples are usually stored in databases called triple stores. Some of the popular triple

stores available today include Jena4, Virtuoso5 and Sesame (Aduna).

Data in a triple store can be queried in a similar way as one executes queries on a relational

database. W3C has created a query language, called SPARQL (World Wide Web Consortium,

2008), to standardize the format of the queries, and a protocol for issuing SPARQL queries

against triple stores and receiving results. A sample query for getting a list of books and their

titles in this language looks as follows:

SELECT ?book, ?title

WHERE

{

 ?book <http://purl.org/dc/elements/1.1/title> ?title .

}

Having a standardized query language means that it is possible to choose any triple store and it

will be compatible with our application. But it also means that public databases which expose

their data in RDF can be queried in a unified manner.

Most triple stores also provide some support for reasoning and inferencing based on the logical

rules defined in an ontology (such as RDF Schema or OWL) and the accumulated data. In short, a

triple store can automatically create new statements based on existing ones. For example:

 Inferring class hierarchies: If Toyota is a rdfs:subClassOf Car and Car is a rdfs:subClassOf

Vehicle, then Toyota is also a rdfs:subClassOf of Vehicle. This transitivity rule is

generalized in OWL so that it can apply to any property through the use of the

owl:TransitiveProperty class. Thus just by specifying that a property is transitive, the

inference engine can deduce new relationships.

 Inferring class membership: If A has property P and property P’s domain is class C, then A

is an instance of C.

Inferencing can be an extremely valuable feature for personal information management. In this

domain there are a lot of simple rules that apply to relationships between people. For example:

 Friendship – a symmetric property – if John is a friend of Peter, then Peter is a friend of

John.

 Child/parent – inverse properties – if Mary is a parent of Peter, then Peter is a child of

Mary.

 Ancestor – a transitive property – if Mark is an ancestor of Mary, and Mary is an ancestor

of Peter, then Mark is an ancestor of Peter.

Similar relationships can apply to other objects. Consider the properties of a Picture:

4
 http://jena.sourceforge.net/

5
 http://www.openlinksw.com/dataspace/dav/wiki/Main/VOSTriple

2.4 Representation and storage| 27

 Depiction – If a picture depicts an object (e.g. a person), then, obviously, that object is

depicted in the picture. Having such an inverse property makes it easy to access all

pictures which are related to a particular object.

 Location – The location where a picture is taken can be represented by an object naming

the geographical location, such as Copenhagen or Odense. A named geographical

location can be a part of a larger one, such as Denmark or Europe, and can be comprised

of a set of smaller ones. By defining the relationships between locations as a transitive

property (in a way similar to the Ancestor property above), searching for pictures taken

in Denmark would return those taken in Copenhagen and Odense, too.

Availability of RDF data

RDF is a language for stating facts. All statements expressed in RDF are made with a reference to

a particular vocabulary of terms. Thus saying that some data is available in RDF means that there

both exists a vocabulary that specifies the meaning of the terms used to describe the data, and

that the data has been represented in the form of statements using that vocabulary.

This has an important consequence: an application that has no prior knowledge of the domain

associated with the data, can, to a certain extent, manage and process the data in a way that is

useful for the user.

Let’s consider metadata about a picture from a digital camera expressed in RDF. The metadata

will have to be based on some standardized ontology – probably EXIF6. By combining the

ontology and the metadata, an application with no knowledge about digital photos can display to

its user a human-readable description of the photo, containing possibly such information as

camera type, aperture settings, lighting conditions, etc. Moreover, by utilizing the relationships

between the photo ontology and some ontology that the application is designed to support, it

can infer that the pictures can be handled in some more complex way. For example, geographical

coordinates embedded in the pictures’ metadata could be used to display them on a map.

Existing data can be converted to RDF through the use of “RDFizers” or RDF extractors. These

programs extract data from some compatible source and express it in the form of triples in such a

way as to closely follow the semantics specified in the ontology. RDF extractors can be found for

many file formats and websites, including JPEG pictures, Microsoft Office documents, Flickr,

Facebook, etc.

There is also a substantial amount of data that is already in RDF form available on the Web. One

of the larger sources includes DBpedia, which is a community effort to extract structured

information from Wikipedia and to make this information available on the Web. It contains

descriptions of over 2.9 million things (DBped09).

2.4.6. Summary

The choice of the appropriate data model for storing personal information is largely dependent

on the flexibility of the model. Personal information encompasses many types of data and forms

complex relationships. From the above comparison it is clear that the relational and object

6
 http://www.exif.org/

28 | Analysis

models are too rigid for this purpose: the model has to adapt to the user’s needs, and this is not

possible when the schema has to be defined up-front and hardcoded in the application.

The choice between the associative model and RDF is also straightforward and in favor of the

latter, but this is due to the large ecosystem of technologies and software that accompany the

core RDF specification, and not drawbacks of the associative model itself. In fact, both models are

associative and they represent data in similar ways. The associative model has even certain

advantages as it is more expressive: in RDF it is not possible to directly use a statement as a

subject of another statement, and a workaround in the form of statement reification is needed.

The most important advantages of RDF are:

 serialization – it is easy to exchange RDF data between different systems due to many

standardized serialization formats (XML, Turtle, etc.); this is an important factor in the

context of obtaining RDF data from external sources and synchronizing user’s personal

information between different computers,

 ontologies – the ability to define a common vocabulary of terms and to specify logical

relationships within a knowledge domain;

 availability of data and tools – RDF extractors make it possible to access data stored

within files, programs and websites; triple stores have support for automated reasoning.

The following table summarizes the differences between the aforementioned models:

 Files and
directories

Relational
model

Object
model

Associative
model

RDF

Unstructured data yes yes yes yes yes

Structured data no yes yes yes yes

Topology hierarchical any any any any

Adding extra
information

no no no yes yes

Schema changes7 n/a difficult difficult easy easy

Reification no no no yes yes8

Querying no yes no yes yes

Tool availability
and popularity

good good good bad average

Table 2: Summary of differences between data models

 Unstructured data – Does the model support unstructured data as a first-class citizen?

 Structured data – Does the model support structured data as a first-class citizen?

 Topology – List of supported data topologies (see Section 2.1.2)

 Adding extra information – Does the model support adding additional structured

information that was not foreseen when the data model was created? (The relational and

object models would require a schema change for this to be possible, while in the

Associative model and RDF it is a matter of creating another association.)

7
 See description below the table for an explanation of the terms “difficult” and “easy”.

8
 Reification in RDF is only supported indirectly by creating an additional set of statements that describe

the original one.

2.5 Summary| 29

 Schema changes – The level of complexity for introducing changes to the data model of a

running system. Difficult indicates that the change might require a

programmer/developer to implement, while easy means that it could be realized by a

user.

 Reification – Does the model have the ability to treat existing data and metadata as first-

class citizens, i.e. entities which can be annotated with more data?

 Querying – Does the model and its implementations provide support for executing

structured queries against the data?

 Tool availability and popularity – The number, quality and maturity of tools that support

this data model. Good – support for this model is included with every major software

development tool; Average – at least 5 different vendors or groups have released tools

supporting this model; Bad – there is less than 5 independent implementations of tools

supporting this model.

2.5. Summary
An analysis of the problems involved in managing distributed information was performed.

Personal information can mean different things to different people, but the owner of that

information has at least partial memory of what it is. Other characteristics of this type of

information have also been discussed, such as the metadata that can be associated with it. It has

been shown that commercial approaches to personal information management lack the

capability to unify and integrate distributed information. An examination of how information is

distributed between different sources has been performed and ideas for unifying it have been

described: combining information representing similar concepts, using links to connect

information objects in a similar way as the mind associates thoughts, and using a single

namespace to access information located in different places. An overview of the suitability of

different data models for keeping personal information was given. The RDF model was chosen as

the one that has the most advantages for this purpose – the flexibility of this model being an

important factor.

30 | Use cases

3. Use cases
This section presents a few use cases that investigate how personal information management can

be improved by using different techniques. A hypothetical PIM application is discussed that can

interact with information stored in different places. Certain features of this application are

presented that try to solve specific PIM problems. Afterwards, a short summary of the features of

a system that would allow for the realization of these scenarios is given.

3.1. Working on a project for a customer
This scenario explores the possibility of using a PIM application as a standalone desktop

application that integrates with Gmail.

Problem

John receives emails from a customer regarding a web project he is doing for them. The project is

in its finalization phase and the emails they send him concern various problems they found with

the website, things they want to have changed, rechecked, improved, etc. John gets a lot of these

kind of emails and it is difficult for him to memorize all the problems that were reported and all

the fixes and changes he has implemented. The emails are often sent by different persons in the

customer’s organization and may concern similar or different issues. One email usually lists

several issues that need to be considered.

John is using Gmail for managing his email and he is tagging the messages with the customer’s

name to keep track of them. When a new email arrives, this is what John does to handle it:

1. He reads the email and identifies the issues that are discussed.

2. He checks if each issue is a new one or if this is a problem he has already worked on.

This step usually requires going through many received emails (as it is often the case that

the same or different person has already raised this problem), checking John’s replies to

those emails (it is possible that this problem has already been solved) and checking his

notes on this problem (they can be located in different places as it is not possible to

attach notes to emails directly).

3. He investigates the issue and solves the problem OR creates a to-do item in his calendar

program that this problem needs to be solved later. He also tags the message with a to-

do tag.

4. Finally, he sends a reply stating that the problem has been solved or that it will be solved

later.

Analysis

Usually, if the problem cannot be solved immediately, managing the information associated with

the problem becomes difficult. This is because:

 One has to remember that a certain problem exists and that it needs to be solved.

This requires creating a reminder in some calendar software.

 One has to keep the customer’s email that initially raised the problem.

This email contains the description of the problem.

 One has to make notes related to the analysis of the problem.

Without the notes, coming back to this problem later might require reanalyzing it.

3.1 Working on a project for a customer| 31

Furthermore, the notes need to be stored somewhere – usually in an application that is

external to the email client.

 One has to contact other people to discuss this problem.

This discussion produces more emails or other forms of communication (message log in

an Instant Messaging application, notes from a phone conversation, etc.)

 One might produce some files associated with the problem.

They should be listed in the problem notes for later reference.

John’s problem resembles a software bug fixing process for which specialized issue tracking

software (such as Trac (Trac09), Bugzilla (Bug09), etc.) exists. However, this problem itself is quite

general and can occur in many situations.

Solution

John’s workflow could be improved by integrating information from different applications in a

single place. This could be accomplished in the following way:

When a new e-mail arrives, John opens the PIM application and finds the corresponding email by

viewing the list of all emails sorted in descending chronological order. He opens the email and

activates the issues view in split-screen mode – the email contents is displayed on the left, while

the list of issues on the right. John can now mark text in the email, right click on it and select

Create Issue. The application will ask to type a short title. A new Issue object is created and is

displayed in the right part of the screen. The text in the email functions as a hyperlink to the Issue

object and vice versa. The issues are displayed as bulleted list. They can be reordered and nested,

allowing for one issue to be composed of several smaller ones. John can also quickly add some

initial notes regarding each issue. He can also add tags to each issue that will help in finding it

later on.

After having marked all issues in the email, John needs to find out if the new issues are related to

any existing ones. Normally, this would require him to go through all emails from the customer.

With the PIM application, he can find similar issues based on matching tags. Before he can do

this, he needs to link the email to the website project by finding the project object in the PIM

application and dragging the email onto it - all the issues are automatically linked to the project.

If John finds a similar issue to the one reported in the email, he can merge the two issues

together. The contents of both issues is combined and they are treated as one.

When going through the list of issues from the email, John can decide whether he wants to solve

them now or later. For the postponed issues, he can quickly create a reminder by right clicking

and selecting Add To-Do. A list of all things marked as To-Do is available in a different view of the

application. In this way John can be certain that he will not forget about the customer’s request.

While John is working to fix a particular problem, he can link any associated resources just by

dragging them onto the issue. This will let him keep all the important files and documents in one

place for later reference.

32 | Use cases

Figure 6: Conceptual illustration of the UI for the “Working on a project…” scenario

The user interface mockup that could help the user accomplish the above tasks is presented in

Figure 6.

Remarks

The presented solution involves taking a simple “flat-text” email and annotating it with metadata

to create higher-order information that is useful to the user. The contents of the email acquires

meaning and becomes linked to other objects in the system – projects, existing issues, notes and

to-do items. This makes it possible to view that contents in different ways, one of which is the

issues view.

It should be noted that the application does not try to automatically extract Issue objects from

email. Only the user is capable of understanding and deciding what parts of the email constitute

an Issue. It is then important to make sure that the process of extracting issues is quick and

efficient, otherwise the user could find it too cumbersome to use.

3.2. Semantic notebook
This scenario explores the idea of a desktop PIM application that lets the user combine

information from different sources in a visual way, but at the same time retaining its meaning. It

has been inspired by the user interface of Microsoft OneNote and attempts to use it as a base for

new features – ones that would combine the flexibility of the visual organization of information

with the benefits of keeping structured information.

3.2 Semantic notebook| 33

Story

Michael is talking to a friend using Facebook’s built-in chat program. The friend invites Michael to

a party:

“I’m organizing a BBQ at my place. My address is: Lillevej 12, 1 th, Lyngby.

We are starting at around 7:00 PM this Saturday. You can bring some beer if

you want.“

Michael starts the PIM notebook and pastes this text onto a blank page. He uses a sidebar to find

the Person object for his friend and drags it onto the page – a small image of his friend appears.

Michael wants to save the address given in the conversation as his friend’s home address for

later reference – he selects it with the mouse and drags and drops it over the friend’s image. A

dialog box appears asking for the type of link between those two objects and Michael selects

Address. The address is now stored in the system and will appear in the Person view for his

friend.

Next, Michael right clicks on an empty region of the page – a popup menu appears letting him

choose Add Social Event. By doing this, some additional fields appear on the page, including Date,

Time, Location. As Michael fills out the date and time fields, a link to this page appears in his

calendar view. He will now be reminded that such an event is taking place whenever he opens

the PIM application.

But Michael also wants to remember that he needs to buy some beer for the party. He selects

the “You can bring some beer” text and right-clicks on it, choosing Add To-Do from the popup

menu. A dialog box appears asking him to provide the Due date for this task. Michael accepts and

a new to-do task is created with reference to the selected text.

Later on during the conversation, his friend tells him about some other people whom Michael

knows and which are coming to the party. Once again Michael finds the associated Person

objects and drags them to the page. However, he wants to distinguish the person organizing the

party from the attendees. He right clicks on the page and selects Add field from the popup menu.

A dialog box appears asking for the type of field to be added to the page, and Michael chooses

Group. He types in “Attendees” as the field’s name and drags and drops the person images onto

the field’s value box.

Furthermore, Michael might decide to associate some tags with the notebook page he has

created. Tags will aid him in quickly locating similar information in the future.

The result of Michael’s work could look similar to the mockup in Figure 7.

34 | Use cases

Figure 7: Conceptual illustration of UI for the “Semantic notebook” scenario

After the event has already taken place, Michael might decide to post the pictures that he and his

friends have taken during the party. Michael has his pictures still on his local disk, while his

friends have uploaded theirs to Picasa and Facebook. Michael would like to combine all of them

into a single album. To do this, he right-clicks on one of his friend’s icons from the Attendees list

and selects Explore. He sets the filter to list only objects of type Image gallery and in this way

finds all albums related to his friend – including the ones published on Facebook and Picasa. He

sorts the albums in descending chronological order and quickly finds the one he is interested in.

The external albums and images accessible through the PIM application contain all the metadata

that Facebook or Picasa stores, such as titles, tags and information about the people depicted in

the pictures.

Michael can create a new subpage of the page containing the party invitation. He chooses an

Image gallery view for this new page, which contains fields that are commonly used for such a

task. He can now drag images from his friend’s album and from his local folder into the newly

created album. He can also group them together, associate them with other objects (such as

persons that are depicted in those pictures), tag and annotate them. Finally, when his album is

ready he can publish it on a web page for others to see.

Remarks

Organizing personal information as it is being collected, in an “on-the-fly” manner, can be

difficult using typical approaches that are found in popular software, such as Microsoft Outlook.

This is because such software requires the user to classify the information up-front in some way –

either as a contact, calendar event, to-do item or a text-only note. However normally personal

information is more complex than that – it contains a combination of different kinds of concepts.

The approach described in the above story lets the user quickly collect all information regarding a

particular subject in a single place and then supplement it with semantic metadata. The user has

effectively created a note, that holds all the important information about an event, and with the

individual parts of the note being integrated into the system – the event appears in the calendar,

3.3 Inviting people| 35

the user will be reminded about the to-do items, and perhaps the note can also be accessed

while viewing information about the people involved in the event.

By linking new information with existing one, the user can tie loose facts (such as the home

address of a person in the message) with the structured information that is already in the system

(the corresponding Person object) and thus extending what they know. However, linking

information in this way also serves the purpose of categorizing information, which can help in

finding this information later from related objects. In order to aid less structured searches, simple

text tags can be attached to objects.

3.3. Inviting people
Sue is inviting her friends and colleagues from work to a party. She needs to either send out

invitations via email, or call people if she doesn’t have their email address.

The process of finding contact information is actually quite problematic for her. She is inviting old

friends from school and some of the e-mail addresses she has in her e-mail client might already

be out of date. She often has more than one email for a person and it is hard to decide which one

might be the current one. Some of the friends have Facebook accounts and this can serve as a

good source for up-to-date contact information. Colleagues from work are a similar problem. As

it is holiday season, not all people will check their company e-mail. It might be necessary to try

their private e-mails or just call them on the phone.

Sue also faces a problem in keeping track of her efforts. She wants to know who was already

contacted, did they respond, will they come, will they bring something, etc.

Fortunately, Sue uses the PIM application to manage her information. She creates a new note

and adds the following fields to it:

 Pending – for a list of people that she intends to invite, but who have not yet been

contacted,

 Invited – for a list of people that she e-mailed, but who have not yet responded,

 Will come – for a list of people that have accepted the invitation.

She can now add people to the “Pending” list by dragging them from the list of all the people she

knows. By clicking the person in the “Pending” list, she can quickly view the details about that

person – including their email addresses and phone numbers. This information was either

imported from her e-mail client, from Facebook or was typed in manually by Sue. By right clicking

on an email or phone number she can see its origin. This helps her in choosing the correct one to

use. From the details view of a person she can also quickly go to a list of all email messages sent

by the email addresses associated with that person. In this way, she can see which email was

used most recently.

Sue sends out invitations and moves people from “Pending” to the “Invited list”. When someone

confirms that he or she is coming to the party or not, Sue can move them to the “Will come” list

or remove them, respectively. If no reply has been received from a person, Sue can try one of the

other email addresses listed in their profile.

For tracking other information, Sue can add more fields to the note. For example:

36 | Use cases

 Will bring something – for a list of people that offered to bring some food or drinks for

the party,

 Will be late.

Sue can add people to these groups and annotate those associations with a note giving the

details (e.g. the type of food they will bring, when they will arrive, etc.) By annotating the

association (i.e. the relationship between the note about the party, the “Will bring something”

property and the person), the additional information will only be visible in the context of the

note about the party. If the person itself would be annotated, then the annotation would be

visible for all uses of that Person object - which does not make sense in this case, as the

additional note applies only in the context of the party.

The application also allows Sue to view the information gathered in the party note in a different

way. For example, she can right click on the “Will bring something” list and choose to open it in a

separate window with a different view. A table view can be used, which, after selecting the

proper fields to display, will show the name of the person and the contents of the associated

annotation. In this way, Sue will have a summary of what each person will bring to the party.

3.4. Summary
A list of features of a personal information management system capable of realizing the scenarios

described in the previous section is given below.

Type system

Information should be organized into types and objects. Types will represent concepts as

described in previous sections. Objects will represent real-world entities or things that the user

considers to have their own, distinct identity. For example, information about a particular email

or a particular person will be represented as an object.

The actual data will be stored in objects in the form of values associated with properties. Each

property might have multiple values. In this way, a property such as “name” could contain values

for the multiple names that a person might have.

The properties that each type may have are intended to serve as suggestions and hints. The user

is neither forced to supply values for all these properties, nor is he or she restricted from adding

new properties that may be needed.

Multiple ways to view information

Most applications provide only a limited amount of choices for the user when providing ways in

which information that they contain can be viewed. The PIM application should offer the ability

to view the same information in different ways. For example, a view could be designed to display

only the most significant information about the object, while filtering out the rest. Moreover, it

should be possible to use different views for browsing collections of objects. For example,

sometimes it is useful to view a list of emails in a way that it is normally presented in an email

client, but it might also be useful to view emails as a set of thumbnails grouped by the project

they belong to.

3.4 Summary| 37

Annotating objects

Annotating an object is a process when one creates a new object, such as a note or a to-do item,

which references some existing object. Example use cases include receiving an e-mail message

and creating a note about it. This note, or some fragment of it, could be, in turn, annotated with

a to-do item that would appear in a list of things that need to be done.

A special case of annotating objects is tagging. When an object is annotated with a tag, either a

new tag is created or an existing tag is found. The name of a tag is its only identity.

When a user annotates an object, the two objects become linked. This means that it should be

possible to access all the annotations of an object from the object itself, and vice versa.

Linking and grouping objects

A link denotes that two information objects are related in some way. It should be possible to

create named links, which describe the type of relation (e.g. one person knows another, this

picture depicts a given location), and simple links, which indicate that some relationship exists

without specifying it.

Grouping objects is intended for keeping objects that are somehow related in a single place.

Grouping objects is realized through linking. Multiple objects (or collections) can be linked to a

single other object, forming a collection of objects. If a named link is used, the group also carries

some meaning (e.g. a group of people that a given person knows).

Object equivalence

Object equivalence lets the user state that two information objects represent the same real

world object.

Treating two distinct objects as one has two principal use cases.

First, it lets the user combine objects from different sources that represent the same entity and

concept. Due to the distributed nature of personal information, data about a particular thing is

stored in many different places. For example, information about a single person could be stored

on Facebook and in the address book of an e-mail client. By combining these two objects, the

user would obtain a union of the information from Facebook and the e-mail client which would

be treated as a single entity.

Secondly, equivalence can be used for merging objects that contain different aspects of an entity.

For example, information about a holiday trip could be stored as a calendar entry in Microsoft

Outlook (date and duration of the trip), as a photo album on Picasa (pictures from the trip), as a

set of notes in Microsoft OneNote (a list of things to pack), and so on. Combining that

information into a single object leaves the user with a single place that can be accessed to find all

the information.

When two objects are merged, it is important for properties of these objects that carry the same

information to be merged as well. For example, a Facebook profile and an Address Book contact

will both contain a name and an e-mail address of a person, although the properties associated

with those values might be called differently on Facebook and in the Address Book. By defining

38 | Use cases

the corresponding properties as similar, the merged object will have only one property stating

the name and one showing the e-mail address instead of two.

Accessing distributed information

The user should be able to enter new information into the PIM system and combine it with

existing information that is stored in external sources. Both types of information should be

treated by the system in the same way – there shouldn’t be any difference for the user related to

the type of information they are working with.

Extracting unstructured information

Some information exists in an unstructured form, as described in Section 2.1.2. Plain text, for

example, might contain references to existing objects. The user might want to mark that a certain

text fragment refers to an existing object (e.g. a person), so that a link between the text and an

object could be established, which would aid in later retrieval.

Text might also contain fragments that can be treated as property values for objects. As

described in the Semantic notebook use case, a text fragment can be extracted and assigned as

an address of a person. Similarly, a link between the original text and the person object will be

created.

Finally, the user might want to annotate certain text fragments with notes or to-do items.

A similar approach can be used for pictures, where different regions of a picture can reference

different objects (such as people, places, etc.)

Sharing information

Sharing personal information is an important part of the interaction between humans. We like to

exchange experiences, discuss our interests, and comment on the activities of others. In fact,

these kinds of activities form the basis of most social networks, including Facebook and MySpace.

Because sharing personal information is such a popular activity, social networks have attracted

millions of users, many of whom have integrated these sites into their daily practices (Boyd, et al.,

2007).

The PIM system is designed primarily as a central place where the user can integrate all of their

personal information. However, it can also be an important tool for publishing this information

for others to see. The user can, for example, combine pictures from different sources into a

Photo album, and then publish it on Facebook. This kind of task is simplified by the system due to

its mechanisms for accessing and combining distributed information.

One of the problems involved in sharing information is defining the scope of the data that should

be published. In a system where all information is stored in the form of associations, this can be

particularly difficult. In the Photo album example above, the album is linked to pictures, the

pictures can be linked to places and persons, which in turn link to other pictures, notes, other

persons and so on. If the application were to follow and publish all links, it might end up

publishing the user’s whole repository.

Another problem involves privacy considerations. Even if a delimited set of information to be

published would be defined, it might be the case that it should not be available for viewing to just

3.4 Summary| 39

anyone. Studies indicate (Boyd, et al., 2007) that even though most social networks provide some

form of privacy controls, allowing the user to specify who gets to see what, it is not enough to

effectively protect the privacy of users.

Intuitive user interface

Interacting with the PIM system should be natural for the user. Therefore the design of the user

interface should follow these principles:

 Right-clicking on an element displayed on screen should invoke a context menu with

actions relevant for that element. For example, right clicking on an object that can be

viewed in different ways should present a list of views that can be used in conjunction

with the object.

 Linking objects should be possible by just dragging one object over another.

 Adding objects to a collection should be possible by dropping it on a collection.

 Adding objects from external sources should be possible by dragging the object from a

third-party application window to the PIM system window.

40 | Design

4. Design
This section presents the design of a system for managing distributed personal information. It

starts by presenting the data model used by this system – what types of entities are visible to the

user (the ontology), how are they realized in the application (the application model) and how are

they persisted in a database (the physical model). Then, the components of the user interface are

described – with views being the core elements in this area. Next, an explanation of how the

system enables a user to find, manage and access distributed information is given. The chapter

ends with a description of how multiple devices can be used to access user’s personal

information and how this information can be shared with others.

4.1. Data model
The PIM system’s data model is divided into three layers. The physical model describes how data

is organized for persistent storage using a database management system. The application data

model, unlike a typical logical data model, does not correspond to the domain model for the

application’s domain, which is personal information management. This domain-specific

information is captured by the ontological model, which is constructed on top of the application

model.

4.1.1. Application

The application data model follows from earlier considerations about concepts and types.

Despite being designed for storing personal information, it is still quite a generic model and it is

not tied to this particular domain.

Objects and values

All user information is organized into Objects. An Object is a set of values associated through

Properties and organized into Collections. It represents a distinct entity, such as a particular

person. For example, an Object representing a person called John Timothy Smith might contain a

Property given name associated with a Collection holding the values “John” and “Timothy”.

Object

Property

PersistentCollection
Values

1 0..* 0..* 1..*

Figure 8: Objects and values

Values in a Collection can be stored either as an unordered set (a Bag), or an ordered list (a List).

A Bag is used when the order of the values has no relevance or makes no sense – for example, a

set of people that a given person knows. A List can be used for storing elements whose order is

important, such as a list of names of a person. The implementation in this project will be limited

to just the Bag collection.

A Collection can hold primitive values, references to other Objects or to other Collections. All

these entities are subclasses of the Persistent class:

4.1 Data model| 41

Persistent

ObjectBase

Object Value

Collection

Bag List

Figure 9: Persistent objects hierarchy

While an Object represents a complex container, simple values are stored through Value classes.

Each Value contains a Datatype field informing about the type of value stored, such as a text,

integer, date, etc.

-value

Value

String

Type
Datatype

0..1

Figure 10: Classes for storing primitive values

In order to support internationalization, text strings are stored through a specialized subclass

called String, which holds a version of a string in multiple languages. Basically, a String is a

mapping between an ISO language identifier (such as “en” or “da”) and a text string.

Type and property hierarchy

Type and Property classes are separate from the hierarchy of Persistent objects (see Figure 9)

and are used to define the domain model for the PIM system.

A Property is a name assigned to describe a particular type of association between an Object and

a value (a value can be any Persistent object, such as another Object, or a simple Value), and a

suggested Type for that value (the Range of the Property). For example, a Property called

birthday could suggest the Type date (its Range) for all new values assigned using it. Moreover, a

Property can have two other characteristics:

 A set of inverse Properties. If Property A is an inverse of property B, then whenever

object O2 is assigned to object O1 as a value for A, then the object O1 is assigned to object

O2 as a value for B.

 A symmetric property bit. If Property A is marked as symmetric, then whenever object O2

is assigned to object O1 as a value for A, then the object O1 is also assigned to object O2 as

a value for A.

A Type is an unordered set of Properties. It is important to note that the Properties of a Type

serve only as guidelines for the possible associations that an Object belonging to that Type might

have – it is neither required that any of these Properties have assigned values, nor the Object is

restricted to having only those Properties that are contained in the Types that it belongs to.

42 | Design

Figure 11 presents these relationships in the form of an UML class diagram.

Object Type
Types

0..*
Property

Properties

0..*

0..*

Range

Figure 11: Objects, properties and types

Apart from the above characteristics, Properties and Types are similar to normal Objects. In fact,

they could be modeled as subclasses of the Object class. However, in most object-oriented

programming languages, including the one used for implementation in this project, it is not

possible to dynamically modify an existing object to make it an instance of a specified class.

Furthermore, a single object cannot extend two different classes, while the underlying physical

model allows for an Object to be a Type and a Property at the same time. Instead, Properties and

Types have been modeled as classes that depend on the existence of an “owner” Object.

Object

Type Property

Parents

0..*

Parents

0..*

ObjectComponent

propertyComponent

owner

1

0..10..1

1

owner

typeComponent

Figure 12: Type and property hierarchy

Both Types and Properties can form a hierarchy by having parent Types and Properties,

respectively. In general, a Type or Property inherits certain characteristics from its parent. For a

Type, the effective set of Properties is a union of its own Properties and those associated with its

parents. A Property, on the other hand, inherits the Range – a set of suggested Types for a new

value.

Equivalence and similarity

Equivalence and similarity are used for indicating that certain objects are closely related to each

other.

Object Property

Equivalent Objects Similar Properties

Type

Similar Types

Figure 13: Equivalence and similarity for objects, types and properties

Equivalence states that two or more Objects are actually the same Object – the URIs assigned to

them can be treated as synonyms. When two objects are marked as being equivalent, accessing

4.1 Data model| 43

any of them will result in the same values. This is accomplished by merging these objects

together. Merging Objects A and B involves:

 Replacing the set of Types of A and B with a union of sets of Types of A and B.

 Replacing the mapping between Properties and Collections for A and B with a new

mapping that contains the union of Properties of both A and B mapped to:

o The original Collection, if the Property was present only in A or B.

o A Bag containing a union of values from Collections in A and B, if both A and B

had values for that Property and both Collections were of type Bag. Note that a

union of sets implies that duplicate values are eliminated.

o A List containing values from Collection in A appended to the end of the

Collection in B, if both A and B had values for that Property and both Collections

were of type List.

o A List containing values from Collection in A appended in random order to the

end of the Collection in B, if both A and B had values for that Property and the

Collection in A was of type Bag, while the Collection in B was of type List.

The individual objects A and B retain their original values in the underlying RDF model. When a

new value is added to a merged object, the URI that will be used for storing this value is selected

at random. This means that it is possible to separate objects that have been merged (i.e. un-do

the merge), but any values added since the objects have been merged might be distributed

between all the original objects.

Similarity, on the other hand, hints about a close tie between objects but the objects themselves

maintain their separate existence. It can only be established for Types and Properties.

When two Types A and B are similar, the application will:

 Offer the same presentation logic for A as for B.

When two Properties A and B are similar, the application will:

 Treat parents of A as also being parents of B.

 Treat values assigned via property A as also assigned via property B.

Consider two types: Contact and AddressbookEntry. They might be associated with data imported

from two different applications, e.g. a calendar and an e-mail client. They conceptually represent

the same kind of information, therefore the PIM system should treat them in a similar way. These

types will also use different properties for describing similar information. Defining those

properties as similar will let the system know which pieces of data can be grouped together.

Moreover, duplicate data for the same property can be removed.

4.1.2. Physical

The application data model is physically stored in an RDF data store. As all data in RDF is stored in

the form of triples (see Section 2.4.5), a conversion between the application model’s objects and

RDF statements is necessary.

44 | Design

Storing objects in an RDF store requires that all such objects – Objects, Collections, Values, Types

and Properties – be uniquely identifiable. Because Types and Properties are tied to an instance of

an Object, effectively only Object, Collections and Values (i.e. Persistent objects) have a need

for a unique identifier – a Uniform Resource Identifier. Objects originating from external sources

may already have an identifier assigned, as it was created when the object was imported (for

example, an URL will be used for images imported from the Web). Other objects will be assigned

an URI by the system when it is first needed. The URI is generated from a user-defined string

combined with a number from a number sequence.

The descriptions below specify a bidirectional mapping between RDF and the application model.

This means that it is both possible to serialize application objects to RDF and to deserialize RDF

into application objects based on the specification below.

Objects

Serialization of an Object to the RDF format is done by creating statements corresponding to all

the Properties and values associated with that Object. As a Property is associated with values

through a Collection, this process depends on the type of Collection. Bags are normally serialized

in association with an Object – they are “attached” to the Object. For each element in a Bag, a

statement corresponding to the following pattern is created:

Statement pattern Example

O P V . ex:John foaf:givenname “John” .
ex:John foaf:givenname “Thomas” .

Note: O represents the URI of the Object, P represents the URI of the Property and V

represents the value. As a value of a property could be another Persistent object, a detailed

description is included in the next section.

When a Bag is serialized in the above way (“attached”), it’s existence is tied to the one of the

Object – when the Object is deleted, so is the Bag. Moreover, the Bag cannot be referenced

directly, as it has no associated URI.

Bags can also be serialized as separate objects, which is always the case for List collections. When

a Collection is serialized in this way, the value V in the pattern above is the URI of the Collection.

This, however, introduces an ambiguity for deserialization: an attached Bag holding a List results

in the same statement as a Property associated directly with a List. In order to solve this problem,

the following rule is used: If an Object’s property is associated with only one value and that value

is a List, then the property is considered to be associated with a List.

The process of serializing elements of a Collection is described in the next section.

An Object can also be associated with a set of Types that the Object is an instance of. This is

expressed in RDF using the rdf:type property, which is used to state that a resource is an instance

of a class (World Wide Web Consortium, 2004/s). For each Type (with an URI T), the following

RDF statement is constructed:

Statement pattern Example

O rdf:type T . ex:John rdf:type foaf:Person .

4.1 Data model| 45

Furthermore, an Object can be marked as being equivalent to another Object. This fact is

expressed using the owl:sameAs property, which states that the things identified by two separate

URIs are actually the same thing – they have the same real world identity. In essence, this

construct expresses that two URIs are synonyms (Bechhofer, et al., 2004):

Statement pattern Example

O1 owl:sameAs O2 . ex:John owl:sameAs ex:Johnny .

Collections

The previous section described how Collections are serialized in connection with an Object. In

this section a description of persisting the elements of the Collection is given.

Serializing a Collection involves creating a statement that describes the type of the Collection and

then a statement for each element. A Bag uses the following pattern:

Statement pattern Example

C rdf:type rdf:Bag.
C rdf:li V .

ex:Id#1 rdf:type rdf:Bag .
ex:Id#1 rdf:li “John” .
ex:Id#1 rdf:li “Thomas” .

(Note: C represents the URI of the Collection. rdf:li is a property that enumerates elements in a

container, and rdf:Bag is the class of unordered containers (World Wide Web Consortium,

2004/s).)

A List uses the pattern below:

Statement pattern Example

C rdf:type rdf:Seq.
C rdf:_nn V .

ex:Id#1 rdf:type rdf:Seq .
ex:Id#1 rdf:_1 “John” .
ex:Id#1 rdf:_2 “Thomas” .

(Note: rdf:_nn is a pattern for list properties that enumerate elements in a container, and rdf:Seq

is the class of RDF ‘Sequence’ containers (World Wide Web Consortium, 2004/s).)

The values of a Collection (represented by V in the above patterns) are stored depending on their

type:

 For Objects and Collections, V represents the URI of the object. This is also the case for

Values which are not attached.

 For attached Values, V represents the literal value (see the next section).

Values

The serialization of a Value usually involves creating only the object part of an RDF statement.

A Value is serialized as a typed literal which is a combination of a string and a datatype

specification. Different types of data are converted to a string form in accordance with the XML

Schema specification (World Wide Web Consortium, 2004/d). For example, a Value holding a

date “December 10, 2009” would be serialized as: 2009-12-10T00:00:00Z^^xs:date.

A special kind of Value is the String class, which is used for representing internationalized strings.

Each language version of a string is serialized as a separate plain literal value in RDF, which is a

combination of a string and an optional language tag (World Wide Web Consortium, 2004/s). This

46 | Design

means that a single String object can result in multiple statements – one for each language

version. Again, this can introduce an ambiguity for deserialization: a Bag of independent Strings

will have the same RDF representation as a single String. The problem is solved by treating all

plain literals with a language tag having the same RDF subject and predicate as being part of the

same String. For example, the statements below would result in two separate String objects:

ex:Object ex:Property1 “My name is Peter”@en .

ex:Object ex:Property1 “Jeg hedder Peter”@da .

ex:Object ex:Property2 “RDF is nice”@en .

Values can also be persisted as standalone objects. This is required when the Value needs to be

referenced using an URI. In this case, the rdf:value property is used. For example:

ex:SomeValue rdf:value “This is a value” .

Types and Properties

Types and Properties are serialized as statements having the Object associated with a Type or

Property as their subject. Figure 14 summarizes all relationships that are defined on the Type and

Property classes and which need to be serialized.

Type
-symmetric:boolean

Property
Properties

0..*

0..*

Range

0..*
inverseOf

similar
0..*

0..*
parents

0..*

parents

similar
0..*

Figure 14: Diagram of all relationships owned by Properties and Types

The table below describes how the above relationships are mapped to RDF statements. Source

and Target URIs denote the URIs of the elements at the source and target of a directed

relationship, respectively. For bidirectional relationships, two sets of statements are constructed:

one using the first end of the relationship as the source, and the second using the other as the

source. One-to-many relationships are serialized by creating statements having the same subject

and predicate but different object for each relationship end.

Relationship
or property

Subject Predicate Object

parents Source URI rdfs:subClassOf (Type)
rdfs:subPropertyOf (Property)

Target URI(s)

properties Target URI(s) rdfs:domain Source URI

range Source URI rdfs:range Target URI(s)

similar Source URI(s) owl:equivalentClass (Type)
owl:equivalentProperty
(Property)

Target URI(s)

inverseOf Source URI(s) owl:inverseOf Target URI(s)

symmetric Source URI rdf:type owl:SymmetricProperty
Table 3: Mapping of Type and Property relationships to RDF

4.1 Data model| 47

For example, the following object graph:

<<Type>>

ex:Person

<<Property>>

ex:FirstName

<<Property>>

ex:LastName

<<Type>>

xs:string

Properties

Properties

Range

Range

would be serialized as:

ex:FirstName rdfs:domain ex:Person .

ex:LastName rdfs:domain ex:Person .

ex:FirstName rdfs:range xs:string .

ex:LastName rdfs:range xs:string .

Equivalence

Equivalence between objects and similarity between types is expressed in RDF through three

OWL constructs with slightly different meanings. The first one, owl:equivalentClass, applies to

classes of things and states that the sets of instances of both classes are equal but the classes

themselves have a different intentional meaning. In other words, the classes represent different

concepts but when one object is an instance of the first class, it is also an instance of the other

class. For example:

ex:US_President owl:equivalentClass ex:PrincipalResidentOfWhiteHouse .

The second construct, owl:equivalentProperty, resembles the previous one except that it

operates on properties instead of classes. Equivalent properties have the same values, but do not

imply the same meaning. This means that if property P1 of object O has value V and P1 is an

equivalent property of P2, then property P2 of object O will also have value V.

The above two OWL properties are used for serializing the Type and Property similarity,

respectively.

The last OWL construct, owl:sameAs, states that the things identified by two separate URIs are

actually the same thing – they have the same real world identity. In essence, this construct

expresses that two URIs are synonyms. For example:

ex:BillGates owl:sameAs ex:WilliamHenryGates .

This construct is used for serializing the equivalence relationship between Objects.

4.1.3. Ontology

The ontology described below defines the actual domain model for the personal information

management system.

48 | Design

Basic types

Person

A type for describing a person. This class inherits most of its properties from foaf:Person, which

includes such properties as names (family name, first name, given names), gender, email address,

interests and a list of other people this person knows.

<<class>>

Person

<<class>>

foaf:Person

<<class>>

Contact

<<property>>

birthday

<<class>>

xs:date
rdfs:range

<<property>>

foaf:birthday

<<property>>

picture

<<class>>

Picture

rdfs:range
<<property>>

hasPicture

<<property>>

primaryPicture

owl:equivalentProperty

<<property>>

displayName

<<property>>

foaf:name

<<property>>

foaf:img

Figure 15: UML class diagram for the Person type

Some of the properties that are already defined in foaf:Person have been specialized in this class.

These include:

 displayName is a property for holding the full name (i.e. given names plus surname) of a

person, formatted in a way that should be used for displaying by the application. The

foaf:name property, which it inherits from, is a generic name for any type of thing.

 birthday is a specialized version of foaf:birthday that specifies its range to be a date

value.

 hasPicture is a subproperty of the picture property that associates a Picture to a Person –

listing all pictures that depict this Person. Note that picture has an inverse property called

pictureOf, which associates the Picture with the thing that it depicts.

 primaryPicture specifies the primary image for a person – i.e. a picture that is used when

a single image representing the person needs to be shown. As this is a subproperty of

hasPicture, all pictures associated via primaryPicture are also considered to be associated

via hasPicture.

Picture

A type for representing an image. This class is an equivalent of foaf:Image, which is used for

describing pictures in the FOAF ontology, and nexif:Photo, which associates EXIF attributes with

4.1 Data model| 49

images. By having these two classes defined as equivalent ones, the application will treat them in

the same way as it handles Pictures.

<<class>>

Picture

<<class>>

foaf:Image

<<class>>

nexif:Photo
owl:equivalentClassowl:equivalentClass

<<property>>

picture

rdfs:range

<<property>>

pictureOf
owl:inverseOf

<<property>>

foaf:img

rdfs:range

owl:equivalentProperty

<<property>>

pictureTitle

Figure 16: UML class diagram for the Picture type

A Picture can be associated with other objects through the pictureOf property, which states that

the picture depicts another object. Whenever such a statement is created, an inverse statement,

saying that a given object is depicted in the picture, is automatically created due to the inverse

picture property.

A Picture type is automatically associated with all images imported into the application. For

supported image types, such as JPEG files, the application will try to extract additional metadata

from the image file, such as when the picture was taken and what camera settings were used.

To-Do Task

A To-Do Task is a type for keeping track of things that the user needs to do. The model for this

type is very simple – it is composed of a title, a description, a due date and time and a completion

status (Pending, Started, Completed).

To-Do Tasks can be created as standalone items, but they are mainly intended to be used for

annotating existing objects. In this way, the to-do item will serve as a reminder for another object

which is directly related to the task that needs to be completed.

Notebook Page

A Notebook Page is a type indented to realize the metaphor of a page in a notebook, where one

can write, draw, attach pictures, newspaper clippings, and so on. The electronic Notebook Page is

a blank area where the user can enter text, put pictures, URLs, references to other objects, etc. In

this way different types of information can be combined as needed to form a single note. The

elements on the Page can be positioned and resized as the user desires.

Figure 17 shows the involved types and properties:

50 | Design

<<class>>

NotebookPage

<<class>>

DesktopElement

<<property>>

desktopElements

rdf:range

<<property>>

target

<<property>>

xCoordinate

<<property>>

yCoordinate

<<class>>

xs:decimal

rdf:range

rdf:range

<<property>>

width

<<property>>

height

rdf:range

rdf:range

<<property>>

noteSubject

Figure 17: UML class diagram for the NotebookPage type

Location

A type for representing a geographical location. Objects of this type can form hierarchies

describing which locations are a part of another bigger location. Such a hierarchy can be used for

finding associated objects. Consider a set of pictures associated with the location Copenhagen. As

Copenhagen is a part of Denmark, displaying the pictures for Denmark might also include those

for Copenhagen.

<<class>>

Location

<<property>>

locationName

<<property>>

title

<<property>>

partOfLocation

<<property>>

locationParts
owl:inverseOf

rdfs:range

Figure 18: UML class diagram for the Location type

Photo Album

A photo album is a collection of pictures. It can have a title and an associated location, which

describes where the pictures were taken.

<<class>>

Album

<<property>>

albumTitle

<<property>>

title

<<property>>

picturesInAlbum

<<property>>

picture

<<property>>

partOfAlbum

<<class>>

Picture

rdfs:range

owl:inverseOf

<<property>>

albumLocation

<<property>>

location

<<class>>

Location

rdfs:range

<<class>>

foaf:Image

owl:equivalentClass

Figure 19: UML class diagram for the Photo Album type

4.1 Data model| 51

An album is intended to group pictures that share something in common. A user might create an

album for grouping pictures from a single trip, but could also use it for storing pictures of favorite

places, etc.

Trip

A Trip type is intended for grouping information related to a travelling. It contains a title, start

and end time and a set of participants. Additionally, a Trip can be divided into a set of smaller

Trip Fragments, which describe the individual places visited during the trip.

Foreign types

The PIM system relies on several additional ontologies for working with external information.

These are:

 Dublin Core (DCMI) – defines terms (e.g. title, creator, publisher), for describing

resources typically found on the Web.

 Friend-of-a-Friend (Brickley, et al., 2007) – allows for describing persons, relations

between them and to other objects.

 NEPOMUK Message Ontology9 (NMO) - defines types for describing emails and instant

messages; it is used by the Aperture (Ape09) framework for importing messages.

 NEPOMUK EXIF Ontology10 (NEXIF) - an adaptation of the EXIF standard for describing

metadata associated with digital cameras and photography as an RDF ontology; it is used

by the Aperture framework for importing pictures.

 NEPOMUK Contact Ontology11 (NCO) - defines types for describing contact information; it

is also used by the Aperture framework.

Only some of the types and properties were explicitly integrated with the PIM system. That is,

some of them were manually defined to be parents or children of, or that they are similar to the

types and properties described in the previous section. For example, NCO’s Contact is defined as

a parent of the Person type. Some foreign types (such as NMO’s Email and Email Folder) had

custom views created for them so that the user can easily work with the data they describe.

However, even if a type or property was not explicitly incorporated into the PIM system, the user

should still be able to work with it if it has associations to other well-known types and properties,

such as the ones defined in the Dublin Core or RDF Schema ontologies.

Important relationships

Some of the relationships described above require a more in-depth look.

A common functionality for the PIM application is to display a name or title for an object, so that

it can be easily identified by the user. For example, when a To-Do task is opened in a new

window, the window title should contain the name of the To-Do task. This is achieved by defining

all the individual title properties of various types as subproperties of a single title property (see

Figure 20). The system can then exploit this relationship to find a correct value to display.

9
 http://www.semanticdesktop.org/ontologies/2007/03/22/nmo/

10
 http://www.semanticdesktop.org/ontologies/2007/05/10/nexif/

11
 http://www.semanticdesktop.org/ontologies/2007/03/22/nco/

http://www.semanticdesktop.org/ontologies/2007/03/22/nmo/
http://www.semanticdesktop.org/ontologies/2007/05/10/nexif/
http://www.semanticdesktop.org/ontologies/2007/03/22/nco/

52 | Design

<<property>>

title

<<property>>

albumTitle

<<property>>

groupTitle

<<property>>

noteSubject

<<property>>

taskTitle

<<property>>

pictureTitle

Figure 20: UML class diagram for title properties

However objects that were imported from external sources (such as from Facebook or Gmail)

use foreign ontologies that have no notion of the title property used by this system. Two

common properties that serve a similar purpose in other ontologies are the label property

defined by RDF Schema (World Wide Web Consortium, 2004/s) and the title property defined by

Dublin Core (DCMI). To properly handle title values for objects using these properties, an

equivalence relation is defined between them and the title property used in the PIM system:

<<property>>

title

<<property>>

dc:Title

<<property>>

rdfs:label
owl:equivalentClassowl:equivalentClass

Figure 21: Equivalence relationship between title properties

A special case of the problem of finding the correct value to display as a title of an object is

related to the Person type. A person has a first name, given names, surname, nickname, etc. Not

all of these properties need to be assigned for every person, but the application should always

display the most relevant value available. This is accomplished by properly defining the hierarchy

of the Person’s name properties:

<<property>>

title

<<property>>

rdfs:label
owl:equivalentClass

<<property>>

foaf:name

<<property>>

displayName

<<property>>

foaf:family_name

<<property>>

foaf:givenname

<<property>>

foaf:firstName

Figure 22: UML class diagram for hierarchy of name properties

When a value for the title is needed, the application will try to find it by starting at the title

property and going down the hierarchy until a value is found. A detailed description of the

algorithm will be given in Section 4.3.4.

4.2. Presentation layer
The primary element of the user interface for the PIM application is the View. A View is a GUI

control for displaying information contained in an Object or a Collection. It implements the logic

4.2 Presentation layer| 53

necessary to present a certain type of information in a predefined way. A single type of

information can be thus presented in many ways by choosing different views. The PIM system

makes a general distinction between the following types of views:

 A normal view is used for displaying objects to the user when a detailed and complete set

of information is needed. Normal view are usually displayed in a separate window or tab,

and occupy a significant portion of the screen.

 A façade view is used for displaying an object for identification purposes. Façade Views

are commonly used when many Objects are displayed as part of a Collection. They

present only the most important information about an object – e.g. a picture and a name

of a person.

 A new object view is a variant of a normal view that is used for editing a new object just

after it has been created. It can present a special set of fields which should be initially

filled by the user.

The main window of the application displays views in the form of tabs – whenever an Object or

Collection is opened by the user, a new tab is created with an appropriate view for the type of

object to display. Views are also embedded in other views. In this way, more complex views can

be constructed from simpler ones.

View

ObjectView

CollectionView

ObjectBase

Collection

Object

1

1

Collection

Parent View

Figure 23: UML class diagram for View classes.

The simplest types of views are value views, which are used for displaying a single primitive

value, such as a text string, a number, date and time, an image, etc. They are combined together

to form more complex built-in views. In turn, built-in views can be combined by the user to form

custom views.

Nesting simpler views within more complex ones requires some cooperation between them in

order to give the user a unified experience. This is accomplished by propagating certain

properties down the view hierarchy - whenever a property of a view changes, it is propagated to

all child views that have a default value for that property set. The properties that use this

mechanism are listed below:

View
+View

+Edit

<<enumeration>>

DisplayModeDisplay mode

1

<<enumeration>>

LanguageCode 1

Language

Figure 24: View properties

54 | Design

 Language specifies the language used for displaying messages. This affects the selection

of Property titles and String values.

 DisplayMode determines whether a view should only display information or also allow

for them to be modified.

Apart from the above propagating properties, a View might define other user-configurable

properties that affect how information is displayed. These properties can be modified by the user

for a view being shown on screen (the settings are effective as long as the view is displayed and

are not saved), or for the whole class of views of a certain type (using the View editor described

in Section 4.2.5).

Other elements of the user interface include controls for editing types and properties, displaying

details about an object’s types and relations and searching for objects.

4.2.1. Built-in views

The application defines several types of built-in views for interacting with typical forms of data.

The visual layout and behavior logic of these views is hard-coded in the application and cannot be

modified by the user.

Value views

Value views enable interaction with basic forms of data – they are used in conjunction with

Value objects. They either display read-only information or allow it to be modified, depending on

the setting of their DisplayMode property (see Figure 23). The following value views are defined:

 TextEditorView – A view for displaying and modifying plain text strings contained in

Value and String objects. For the latter, the view displays a language version of the

string that matches the Language property of the view.

 DateEditorView – A view for displaying and modifying date and time values. This view

supports Value objects with a datatype of xs:date and xs:dateTime.

 NumberEditorView – A view for displaying and modifying numbers corresponding to the

numeric types defined in XML Schema (World Wide Web Consortium, 2004/d).

 ComboSelectionView – A view that displays a single value which can be selected using a

drop-down list from a set of values obtained from a Collection. This view requires that

the Range of the property for which a value is edited would be a Bag holding a list of

values, in addition to being a Type.

 RichTextView – A view for displaying and editing rich text strings contained in Value

objects of type HtmlText (i.e. rich text is serialized to a HTML form). The view supports

basic text formatting operations, such as changing the font type, size, style and color.

 ImageView – A view which treats the URI of an object as a Web URL and uses it to display

an image retrieved from that address.

Outline view

The Outline view is the simplest type of a view for displaying Objects. It simply lists all properties

defined for an Object and their values. As each property is associated with multiple values

through a Collection, OutlineView uses other CollectionViews and ObjectViews to render the

actual values. Displaying an Object in an OutlineView thus involves the following steps and

components for each property contained in the Object:

4.2 Presentation layer| 55

Property Title:

1. 2.

3.

Figure 25: Diagram of the OutlineView

1. OutlineView displays the title of the property.

2. OutlineView chooses a CollectionView for displaying the Collection associated with a

property. Usually the SimpleCollectionView is used.

3. The CollectionView displays the elements of the Collection using façade ObjectViews.

A special feature of the OutlineView is the possibility of quickly adding new properties (i.e. extra

information) to an Object. By right-clicking on the view, the user can invoke a context menu from

which the “Add new property” item can be selected. This displays a drop-down box where a

property already defined in the system can be selected or a completely new property can be

quickly created. For example, the user can create a new property “Bank account” to store the

account information for a person. Once this property is created, it can be reused for other

Objects.

Desktop view

DesktopView is used for displaying Objects of type Notebook Page. A Notebook Page represents

a page on which other objects can be placed. An Object of this type contains a list of references

to other Objects together with coordinates and dimensions for displaying them on the screen.

The view is composed of the following components:

(see Figure 41 in Appendix A for an example of how this view is realized in the prototype)

Title

Properties

1.

2. 3.

Figure 26: Diagram of a DesktopView

56 | Design

1. A box showing the title of the Notebook Page (the noteSubject property).

2. An OutlineView for displaying additional properties associated with the Notebook Page.

The rest of the view (3.) is an area where Objects can be placed. Each Object is rendered using a

default ObjectView selected for that type of Object. The ObjectView is placed inside a border

that can be resized and dragged by using the mouse, which results in the ObjectView being

resized and moved around the Notebook Page, respectively.

By clicking on an empty area of the DesktopView, the user can create a new HtmlText object that

will be rendered using the RichTextView. In essence, the user can add additional rich text notes

to the Page just by clicking on it.

Similarly to the OutlineView, the user can right click on the list of properties (2.) and choose Add

property to add a custom property to the note.

This view defines the following user-configurable properties:

DisplayProperties Determines if a list of properties assigned to the Object be displayed in
the View, i.e. should the box labeled (2.) in Figure 26 be visible.

DisplayTitle Determines if title of the Notebook Page should be visible (1.)

Façade view

FacadeView is the view that is used by default to display objects in façade mode, if no specialized

view is available for that object type. The object is displayed as a button containing the title of

the object (obtained through the title property, or the URI of the object if no title has been set)

and a list of types of the object. Clicking on the button opens the object in a new tab using the

default view – this will usually display the details of the object.

Xaml view and Typed Outline view

XamlView and TypedOutlineView are two classes for displaying user-defined views. The former

uses an Extensible Application Markup Language (XAML) file (Microsoft) as a source for the view

definition. A view defined in a XAML file can contain any Windows Presentation Foundation

(WPF) elements (Microsoft), such as buttons, labels, text boxes, tabs, etc. Additionally, it can

contain other views. A description of how views are defined in XAML will be given in Section

4.2.2.

One of the views that is typically used in conjunction with the XamlView is the

TypedOutlineView. This view displays a list of properties and values in a way similar to the

normal OutlineView, which was described earlier. While an OutlineView displays all the

properties associated with an Object, when using a TypedOutlineView the user can specify which

values should be displayed on screen.

Items that are to be displayed by this view are describes using the Item class:

4.2 Presentation layer| 57

+Title:string

Item
ViewDescriptor

PropertyItem Property

VirtualItem Mapping

Type
Property

Property
OfType

ReflectiveMapping

+Uri:string

UriMapping

+Value:string

ValueMapping

View

Mappings

1..*

Figure 27: UML class diagram for TypedOutlineView items

An Item defines the title to be displayed on screen and the view that should be used for

displaying the values. The view can be either an ObjectView – then only the first element of the

underlying collection will be displayed, or a CollectionView, which will display the whole

collection. The ViewDescriptor class holds a name of the View class and contains logic to

instantiate it.

An Item can be either a PropertyItem, which displays values associated with a Property, or a

VirtualItem, which holds a simple query that will return a set of values for display. The query is

defined in terms of one or more Mappings, which are combined using the “and” logical operator:

 A ValueMapping retrieves all objects which have the given Value assigned using the

given Property. The datatype of the Value can also be specified. An example query

constructed using this mapping would be: “show all objects which have an Age equal to

24”.

 A UriMapping retrieves all objects which reference an Object identified by the given URI

assigned as a value of the specified Property. In addition, the type of the returned objects

can be restricted to the specified one (OfType). An example query constructed using this

mapping would be: “show all objects of type Picture which reference a Person identified

by the URI ex:JohnDoe”.

 A ReflectiveMapping is equivalent to UriMapping except that the URI of the referenced

object is automatically set to the URI of the object currently displayed in the

TypedOutlineView. For example, a custom Person view defined as a TypedOutlineView

could use this mapping to show all pictures that reference the currently displayed

person.

58 | Design

Furthermore, this view defines the following user-configurable properties:

Orientation Determines whether the items should be displayed each on a separate
line (Vertical) or all on the same line (Horizontal).

Simple Collection view

SimpleCollectionView displays a list of objects belonging to a collection. The objects are

rendered one by one using a default façade view for that type of object.

The list of objects can be displayed in one of the three modes: horizontal (all elements are

displayed on a single line), vertical (each element is displayed in a separate line) or wrap

(elements are displayed in a line, but overflow to following lines). If the collection being displayed

is a Bag, then the elements are shown in random order. On the other hand, if the collection is a

List, the elements are displayed accordingly to their position in the List. Moreover, the elements

can be reordered by dragging them with the mouse.

SimpleCollectionView can also display elements grouped by a certain property value. The user

selects a property that will be used for grouping from among the properties of the Objects

present in the collection. Only elements of type Object having a value for that property are

displayed in the view when the grouping feature is active. If an Object has multiple values for that

property, it is displayed in more than one group.

See Figure 40 in Appendix A for an example of how this view is realized in the prototype.

This view defines the following user-configurable properties:

LayoutMode Horizontal, Vertical or Wrap.
GroupBy The property used for grouping.

Alternative values Collection view

AltCollectionView is a view that displays just a single value from a collection at a given time.

The user can switch the currently displayed value by clicking a button, or can use a drop down list

to directly select a value.

This view is intended to be used when there typically is just a single value for a property, but

additional values are possible. For example, most people will have a single mobile phone number,

but some might have more.

List view

ListView displays Objects belonging to a collection in the form of a table, where each column

corresponds to a specific property. The header of a column can be clicked to initiate sorting by

that property.

The set of properties that will be displayed in the table can be configured by the user. By default,

the view will use all the properties of the type being the range of the property associated with

the view’s collection. For example, if the ListView is embedded in another view to display the

values of the “pictures” property (which contains elements of type “Picture”), then it will use the

properties of Picture as columns.

4.2 Presentation layer| 59

Timeline view

The TimelineView is a view for displaying Objects belonging to a collection grouped by date. The

user can select a specific property of type xs:dateTime which will be used for comparison, or the

system can use the first property of that type which it finds assigned to an object. If an Object

does not have a suitable property, it is not displayed at all in this view. If an Object has multiple

values for that property, it is displayed multiple times in the view under different dates.

The view is composed of three parts:

Sep 09 Oct 09 Nov 09 Dec 09

1.

3.

2.

10 Oct 09 – 20 Oct 09

Figure 28: Diagram of a TimelineView

1. A draggable timeline.

2. A period indicator – the user can drag the period boundaries to change the length of the

period.

3. A SimpleCollectionView for displaying a set of objects that belong to this period.

This view defines the following user-configurable properties:

GroupBy The property used for grouping.
PeriodLength The length of the period for classifying objects into a group.

4.2.2. Custom views

Custom views are views which can be created and modified by the user. Defining a custom view

involves defining the graphical layout and contents of the view and assigning it to one or more

types for which this view is suitable. The prototype supports only custom ObjectViews, i.e. it is

not possible to define a custom view for a Collection.

The contents of a view is defined using XAML (Microsoft), an XML-based language for

declaratively defining the elements of the user interface. Defining a user interface in XAML is

somewhat similar to how web pages are defined using HTML. The prototype design uses the

XAML concept of attached properties12 to assign which user interface elements defined in the

view should display particular Object properties.

The following attached properties can be used:

12

 An attached property is simply a named value assigned to an existing object. The object itself doesn’t
need to have any knowledge or support for that value.

60 | Design

 Property – specifies the URI of the property that is to be used as a source of values for

an element;

 VirtualCollection – specifies a Collection created by executing a user-defined query as

the source of values for an element;

 InheritenceDirection – specifies how should values from ancestor and descendant

properties be used when no value for the given property is assigned to the Object; used

in conjunction with the “Property” attached property.

The above attached properties can be assigned to standard WPF elements, such as text boxes,

labels, buttons, etc., or to ObjectViews and CollectionViews. When a custom view is used to

display an Object, the Object itself is assigned to the topmost element in the view. If that

element has no attached property assigned, then the child elements are inspected. This

operation continues all the way to the leaf nodes of the element tree. If an element with a

Property or VirtualCollection attached property is found, then these properties are used for

retrieving the values to be displayed.

For example, the façade view for a Person type is defined in the following way:

<v:XamlView …>

 <StackPanel>

 <c:ImageView v:XamlView.Property="pim:primaryPicture"

v:XamlView.InheritanceDirection="Both" IsFacadeMode="True"/>

 <Label v:XamlView.Property="foaf:name"

v:XamlView.InheritanceDirection="Both" Content="{Binding /Value}"/>

 </StackPanel>

</v:XamlView>

It displays a StackPanel (a standard WPF element for displaying child elements beside each

other), which contains an ImageView (a built-in ObjectView) that will display an image obtained

from a property called pim:primaryPicture, and a Label (another standard WPF element) that

will display the name of the person.

The prototype defines several custom views for handling types defined in the ontology:

Type View Description

Email EmailView Displays a single e-mail message: a sender, recipients,
subject and message body.

Location LocationView Displays details of a geographical location: name, parent
and child locations.

Mail
Folder

MailFolderView Displays a list of messages in an e-mail folder in a way
similar to traditional e-mail clients.

Person PersonView Displays details about a person, including names, birthday,
picture, e-mail address and homepage. Additional details
are available through a series of tabs: people this person
knows, pictures, notes and trips that are related to the
person.

 PersonNewView A view listing only the most important properties to fill in
when creating a new Person object: first name, surname,
nick name and date of birth.

 PersonFacadeView A façade view for Person. Displays an image of a person
together with their name.

4.2 Presentation layer| 61

Photo
Album

PhotoAlbumView Displays a description of the photo album together with a
gallery of images belonging to that album.

Picture PictureView A detailed view for a Picture, which, apart from the image
itself, displays associated objects (pictureOf property), a
title and description, and a set of EXIF image properties
(such as camera maker, settings when the picture was
taken, etc.)

ToDo Task ToDoView Displays the title, due date, completion status and
description of a to-do task.

Trip TripView Displays a description of a trip, including a title, participants
and visited locations.

Table 4: A list of pre-defined custom views

4.2.3. View selection

A complex view displays information to the user by relying on simpler views to render their

corresponding parts of the data contained in an object or a collection. For example, a Collection

view might display objects in the form of a list, but the way each individual object in the list is

rendered is left to an automatically chosen façade view.

The system maintains a list of object views that are suitable for a given type, similar to the one

given in Table 4 above. Each type can be mapped to zero or more views. For each such mapping,

the type of the view is indicated (i.e. normal, façade or new object, as described in the beginning

of this section). One of the views is marked as the preferred view – a view that will be

automatically selected, when needed. The remaining views are offered as suggestions when the

user wants to select a different view by using the context menu.

 A complex view can request a view that will be suitable for displaying a property, a collection or

an object or value. These cases are handled in the following way:

 A property – The range of the property is inspected. If the range indicates that this

property stores literal values (e.g. strings), then an Alternative values collection view is

selected. Otherwise, a Simple Collection view is selected.

 A collection – A Simple Collection view is always selected.

 An object or value - The mapping between types and views is consulted to find a

preferred view for one of the types of the object or value. The parent types are inspected

next if no view is found. Additionally, the preferred view must match the requested view-

type (normal/façade/new-object). Finally, if no view can be found in this way, a default

view is selected: an Outline view for the normal view-type, a Façade view for façade type

and a Typed Outline view for new-object.

4.2.4. Context menu

Any area of a view can be right-clicked to invoke a context menu with actions relevant to the

clicked element. Different actions are displayed dependant on the type of the element and

whether it is part of a collection. Standard actions include:

Applies to: Title Description

Objects Add Annotation… Creates a new annotation for the selected
object. The user is presented with a list of
possible annotations (Note or To-Do).

62 | Design

Objects Open in Application… This option is only available if the object was
imported from an external source. It will try to
open the object in the application that the
object originated from.

Collections Add Element… Creates a new object of the selected type and
adds it to the collection.

Objects and
Collections

Open With… Opens the object or collection using a chosen
view. The user is presented with a list of views
suitable for the object’s types.

Properties Edit Property Invokes the Ontology Editor on the selected
property.

Objects and Values Edit Type… Invokes the Ontology Editor on the selected
type. The user can choose from the types
associated with the Object or Value clicked.

Objects and Values Show Details Displays the Object Details form with
information about the clicked object.

Objects and Values Delete Marks the Object or Value for deletion. It will
be removed from the system.

Persistent13 Edit / View Switches between View and Edit mode for the
selected view.

Persistent Replace View… Replaces an existing view with another one
chosen from a list.

Persistent in
Collection

Remove Element Removes an element from a collection.

Any Set Language… Changes the language used to display the
selected element.

Table 5: Summary of context menu actions

In addition to the actions listed above, views can define their own additional actions that apply to

the elements they are displaying. For example, the Outline View provides an “Add Property”

context menu action, which allows for adding new properties to an object.

Some of the actions listed above require further discussion:

The “Open in Application…” action lets the user quickly open the external source from which an

object was imported. As described in Section 2.3.3, the PIM system is intended to help the user

organize, retrieve and keep track of different kinds of information. It is not intended to replace

the functionality offered by specialized applications. That is why being able to quickly open the

original source is an important function. If an object was merged with other objects that were

also imported from external sources, the context menu will let the user choose which application

should be invoked.

The “Replace View…” action is intended to let the user temporarily modify how information is

displayed on the screen. When a view is displayed, child views are selected automatically based

on the view’s settings or by choosing the most appropriate view for the given object or collection,

as described in the previous section. However, the user can also choose another view to replace

the current one. This action is similar to “Open With…”, except that instead of opening the view

in a new tab or window, it replaces it in-place of an existing view.

13

 Persistent objects include Objects, Values and Collections.

4.2 Presentation layer| 63

The potential use cases of this function are as follows. First, it lets the user view the same object

in different ways. This could be used for switching between views that focus on different parts of

the information contained in an object. Secondly, it allows collections of objects to be viewed in

different ways. Suppose a Photo Album view displays a list of pictures as a set of thumbnails.

However, the user might be interested in viewing those images grouped by time (e.g. using the

Timeline view), or to view the title and description of each picture in the form of a table (the List

view).

4.2.5. View editor

The view editor is a simple graphical editor for defining custom views. It allows the user to create

specialized views for new or existing types of information. As described in (Huynh, et al., 2002),

the “user interface changes performed by the user are high-level: they are to programmers’ user

interface work as interior design is to carpentry. In other words, customizing the user interface is

akin to editing a word processing document or manipulating a spreadsheet.”

The view editor functions in the following way. A user is presented with a blank form (when

creating a new view) onto which UI elements can be placed. The following elements should be

available:

 A Label – for displaying read-only text.

 A Textbox – for displaying modifiable text.

 A Grid – An element container that has a customizable number of rows and columns;

each cell can contain one other element, including another grid. The width and height of

rows and columns can be modified.

 Any built-in or user-defined View.

The UI elements are sized automatically to fill the full space available in the parent container.

Thus all layout and element sizing is accomplished using the Grid element.

Each element can be edited in order to set its user-configurable properties. These will include:

 The Property, VirtualCollection and InheritenceDirection attached properties as

described in the Custom views section.

 A static text to display in the Label element (the Label can also display values obtained

using the attached properties).

 Any of the built-in view-specific user-configurable properties, such as the LayoutMode

and GroupBy properties for SimpleCollectionView.

The view editor will load and save view definitions in XAML format.

4.2.6. Ontology editor

The ontology editor allows the user to modify the types and properties defined in the system. It is

composed of two parts:

The type editor allows the user to create, edit and delete types. Apart from setting the title and

description for a type, the set of properties for that type can be defined. When displaying a list of

properties, the editor indicates which properties are defined specifically for the edited type and

which are inherited from the type’s parents. Moreover, the user can inspect the location of the

64 | Design

edited type in the type hierarchy: the editor displays a list of ancestors, parents, children and

descendants. The set of parents and children can be modified. Finally, the type editor lets the

user define a set of similar types.

Similarly, the property editor allows the user to create, edit and delete properties. The user can

set a title and description for a property, as well as suggested types for objects created as values

of this property (the range of the property). The user can also inspect and modify the property’s

location in the property hierarchy: its ancestors, parents, children and descendants. The editor

also allows for specifying special relationships to other properties: the set of inverse and similar

properties, and whether this property is a symmetric one. Finally, the user can browse a list of

types that make use of this property.

There are three major use cases for the ontology editor:

First, the user can define new types and properties for objects as he or she see fits. As the PIM

system is intended for personal use, it is encouraged to define new types and properties when

the existing ones do not fulfill the user’s needs.

Secondly, the user can extend and modify existing types. If an existing type does not have a

property that is commonly used by the user, it is easy to define it (the view editor can then be

used to add this property permanently to an existing view). Additionally, the user can create new,

specialized types that inherit some of the properties from existing ones.

Finally, the ontology editor can be used to relate new ontologies to the ones already defined in

the system. This is a useful feature when working with data from external sources. If a foreign

ontology has types representing the same concepts as one of the user’s ontologies, the types and

properties from one ontology can be marked as similar to matching types and properties from

the other. In this way, the PIM system will treat objects and values imported from a new external

source as it treats other objects and values representing the same concepts. For example, if a

user would import data from a database about movies, they could relate the type Actor to an

existing type Person. In this way, the system would use the same view for Actor objects as it does

for Person objects.

4.2.7. Internationalization

The system provides lightweight support for internationalization. It enables the user to interact

with the application in a chosen language and to use multiple languages when storing data. For

example, when describing a photo that is to be published for others to see (more on this in

Sharing information later on), a user might enter text both in English and in Polish so that

different users can view it in their preferred language.

The underlying database model – RDF – allows for literal values to be stored with an associated

language tag. This functionality is handled at application level by the String class. Most text

strings presented by the user interface already originate from RDF data. These are type names,

property titles and user-data values. In this way, the language used by the user interface can be

customized.

4.3 Finding and managing information| 65

The application runs with a global default language. Each view uses this language to select

appropriate strings for display. The view’s language can be changed to a different one using the

context menu. Such a change will affect all descendant views as well.

Unfortunately, not all text strings can be localized. In particular, text used in custom views can

only be entered in a single language.

4.3. Finding and managing information
One of the most important functions of an information management system is to allow the user

to quickly find relevant information that he or she needs. This section describes how this

functionality is realized in the prototype.

4.3.1. Searching for objects

The most typical way for searching for information is a function that lets the user enter keywords

that will be used as the basis for a full-text search. Such a function can be found in most

applications – it is suitable for both structured and unstructured information. On the other hand,

structured information, such as RDF data, can be searched by creating arbitrarily complex queries

in one of the available languages (e.g. SPARQL). Entering a few keywords for a full-text search is

easy, but often produces inaccurate results. Creating structured queries is more time consuming

and requires the knowledge of the query language, but may find exactly what the user is looking

for. Therefore a balanced solution is needed.

The prototype combines these two approaches by giving the user a possibility of defining queries

in simple and advanced mode.

In simple mode, the user can:

 choose whether they are searching for an object, a type or a property;

 enter a few keywords that will be used as a basis for a full-text search on all primitive

values and URIs associated with an object;

 for objects - choose a type that the object must be an instance of;

 for types/properties – choose a type/property as a parent for what is being searched.

For example, in order to find a person named “John Doe”, the user might choose an object

search, enter “John Doe” in the keywords box and put “Person” in the type box.

In advanced mode, the user can refine the query by specifying a list of constraints that the

objects must satisfy. The following predicates can be used when defining constraints when

searching for objects:

 is instance of T – List all objects that are an instance of type T.

 has value V [via P] – List all objects that have a value V. The value can be either a

primitive value (e.g. a string or date), or an object. Optionally, a property P can be

specified that this value must be assigned to.

 has value V [max-distance D] – List all objects that have a value V associated with them

through no more than D intermediate objects.

 is referenced by O [via P] – List all objects that object O has a reference to. Optionally, a

property P can be specified through which the searched objects must be referenced.

66 | Design

When searching for types and properties, the following predicates can be used in addition to the

ones described above:

 is subtype of X – The type or property must be a subtype/subproperty of X.

 belongs to T – The property must belong to type T.

The advanced search UI feature presents the constraints as a list where items can be added and

removed. A predicate is selected from a drop down box, a plain text value can be entered from

keyboard, while a type or property can be chosen using a text box with autocompletion by typing

its title or URI. An object can be selected by dragging it from some other location and dropping it

on the constraint value field.

A query constructed in the above manner (either in simple or advanced mode) is executed

through a special Collection class – a VirtualCollection. This has the following advantages:

 Any CollectionView can be used to display the results. They can be presented in a form

of a table, a list, a timeline, and so on. Depending on the view, different aspects of the

listed objects can be emphasized.

 Elements can be added and removed from the VirtualCollection, which results in the

objects themselves being modified to match the constraints defined in the query. For

example, when results of a search for all objects of type Person which have a value

“James” are displayed and a new object is added to that collection, it will automatically

be assigned the value “James” (through a special rdf:value property, if no via property

was specified) and the Person type.

4.3.2. Related information

Another important way of finding relevant information is to view all information that is related to

a particular object, so that the user can explore and follow links from one object to another (as

explained in Section 2.3.4). This is accomplished through the Object Details form.

The Object Details form displays all objects that reference the selected object, grouped by their

type. For example, viewing the details of a person could show all pictures, notes, to-do items, etc.

that are associated with that person. The user can click on any of the displayed objects to open it,

or right click and select the “Show Details” menu item to view the associations of that object. The

Object Details form is displayed in a special side pane of the main application window. The side

pane tracks the history of all the forms that were displayed in it, offering back and forward

capabilities similar to a web browser. In this way, the user can go back to the details of a previous

object if the link he or she followed is not the desired one.

Moreover, as the list of associated objects is displayed as a standard SimpleCollectionView,

the user can use the context menu to replace it with any other view that is needed. For example,

instead of displaying objects grouped by their type, the user can invoke a time-line view.

Furthermore, the Object Details form can be used for viewing and modifying tags associated with

a particular object.

4.3 Finding and managing information| 67

Annotating objects

Annotating objects involves creating a new object that references an existing one. There is a

special set of Types that can be used for creating annotations. In this prototype, only two types of

annotations are supported: a note (the NotebookPage type) and a todo item (the Todo type).

When an annotation is created, the two objects become linked by the pim:isReferencedBy

property, making it easy to find one object from another using the Object Details form.

Linking objects

Linking objects is used to either express that the two objects are related in some unspecified way

(but meaningful to the user), or to associate one object to another through a selected property.

Linking objects is accomplished through drag-n-drop. The user can drag an object from one view

onto another object or a collection of objects. When an object is dropped on a collection, the

object is added as a member of that collection. However, when an object is dropped on another

object, a popup window appears asking for the type of association to establish between these

two objects. The following choices are available:

 A “generic” link. This indicates that the user does not want to specify the type of

association between the objects. In practice, a special property pim:isReferencedBy is

used to create this link.

 A specific property. The user can select a property that is to be used to link these two

objects. The application automatically suggests a property based on the types of objects

that are being linked. For example, a “knows” property is suggested when linking two

Person objects, and a “picture of” property when a Picture is dropped on a Person.

In addition to defining a link, the user can also indicate that two objects are equivalent by

dragging one onto the other. This will merge the information contained in these objects into a

single object. Any reference pointing to one of the original objects will now point to the newly

created merged object.

4.3.3. Unstructured information

Not all information stored in the PIM system is available as separate Objects. For example, the

contents of an email message is just a text string, although it might contain fragments that could

reference other Objects. In a similar way a picture is just a stream of binary data, but might

depict persons that are represented in the PIM system as separate Objects.

The application therefore provides support for marking fragments of unstructured information so

that they could be treated as separate Objects, allowing them to be used as property values,

linked to existing Objects or just annotated.

The following data model is used for expressing information about fragments:

68 | Design

<<type>>

InformationFragment

<<property>>

originalObject

<<type>>

TextFragment

<<property>>

fragmentId

<<type>>

PictureFragment

<<property>>

xCoordinate

<<property>>

yCoordinate

<<property>>

width

<<property>>

height

Figure 29: Information fragments data model

The InformationFragment type holds a reference to the object holding unstructured information.

In case of a text fragment, the associated Value object will have to be stored in a form

identifiable by an URI, so that it can be referenced (see Section 4.1.2).

When referencing objects in a picture, the user can move and resize a rectangle indicating the

picture fragment that shows the relevant information. The coordinates of the rectangle are then

stored in an instance of the PictureFragment type.

When referencing text, the user simply selects a particular text fragment. The original text stored

in the Value object is then converted to an XHTML form corresponding to the pim:HtmlText type

(if not already in that form). This is needed so that an XHTML tag can be inserted into the text,

marking the selected fragment. The visual form of the text presented to the user does not change

even if the conversion took place. The XHTML tag contains an attribute with a value that uniquely

identifies the fragment within the scope of the Value object. This unique ID is then stored in the

TextFragment object as the fragmentId.

For example, consider the following text:

 Let’s meet tomorrow for a drink.

Suppose the user marks the fragment “meet tomorrow” in order to annotate it with a To-do task.

As the original text is in a plain-text format, it will be converted to XHTML and a special tag will be

added to mark the fragment (indentation added for clarity):

<html xmlns=”http://www.w3.org/1999/xhtml”

xmlns:x=”http://szyman.magres.net/2009/pim-html”>

<body>

 Let’s <x:ref=”ra82daex”>meet tomorrow</x:ref> for a drink.

</body>

</html>

The TextFragment and PictureFragment objects are standalone objects which can be treated as

any other object – i.e. they can be linked and annotated. The visual presentation of these objects

to the user is accomplished through special views (TextFragmentView and

PictureFragmentView), which display only the marked text fragment and the marked image

fragment, respectively. In case of the TextFragment object, modification of the text will result in

4.3 Finding and managing information| 69

the fragment in the original text being modified, ensuring consistency. Moreover, as the

InformationFragment objects contain a reference to the underlying unstructured information

object, invoking the Object Details form on them will let the user follow a link to the source of the

extracted fragment.

Extracting information fragments allows for the following use cases:

 Marking text in an email and annotating it with a to-do. The annotated text can

automatically serve as the title of the to-do item.

 The user receives an email with an address of a friend. The fragment containg the

address can be extracted and used as the value of an “Address” property for that friend’s

Person object. A reference to the original email is maintained, so the origin of that

information can be traced back later, if needed.

 The user finds a photo in a Picasa album, showing some of his friends. He may mark their

faces as picture fragments, which will result in this photo being automatically linked to

the respective persons.

 The user might also want to use one of the faces from the aforementioned photo as an

emblem for a Person object. He just marks it and drags it onto the Primary picture

property in the Person view.

4.3.4. Summarizing information

An information object (e.g. describing a person) can contain a lot of information. Usually it is not

desirable to display all this information at once, as this will lead to a cluttered view. Sometimes

not all information about an object is available – for example, an email address might be

available but not the name of the associated person. In order to display relevant information to

the user, the PIM prototype can group information together and use substitute information

when the exact one is not available.

This function is accomplished by the PropertyViewHelper class which uses the parent-child and

equivalence relationships between properties when selecting values to be displayed in a view.

For each property displayed by the view, the set of values for that property contains the values

belonging to itself and its related properties, but not including values that belong to properties

already displayed by the view.

The set of properties that qualify as related depends on the InheritenceDirection setting

requested by the view. The following modes are possible:

 Descendants – Related properties include all equivalent properties and all descendant

properties.

 Both – Related properties include all of the above and all ancestor properties.

 BothWithTree – Related properties include all of the above and all descendants of the

ancestor properties.

In cases when only a single value for a property is needed, the following precedence rules apply:

 Descendants – First try the original property, then its children, then their children, and

so on.

70 | Design

 Both – As with Descendants, and then the parents, then their parents, and so on.

 BothWithTree – As with Descendants, and then the parents, the descendants of

parents, then the parents of the original property’s parents, and so on.

The different use cases for the above algorithm are described below.

Case 1

Let’s consider a Person object with values assigned as shown in Figure 30, and let the relations

between properties be also defined as shown.

<<property>>

foaf:name

<<property>>

displayName

<<property>>

foaf:family_name

<<property>>

foaf:givenname

<<property>>

foaf:firstName

‘Henry’ ‘William’

‘Gates’

<<property>>

email

‘billg@microsoft.com’

Figure 30: Example property hierarchy and values

A View displaying only the family_name and givenname properties, without the use of the

Helper, would only show the values “Gates” and “Henry”, respectively. This information is a little

bit misleading, as firstName is actually a type of givenname. When displaying these properties in

Descendant mode, the view will show “Gates” as the family name, and “Henry” and “William” as

the given names. If all three properties were displayed by the view, the grouping of “Henry” and

“William” together would not occur even with the Descendants mode active.

Case 2

Let’s consider the same Person object but in relation to displaying pictures. A person might have

many pictures, and one of those pictures could be set as the primary picture (a picture that is to

be displayed as an emblem for that person). The relationship between these two properties is

the following:

<<property>>

primaryPicture

<<property>>

picture

Figure 31: Relations between picture properties.

Displaying these two properties can lead to a few interesting cases:

 When an emblem for a person is needed (e.g. when displaying the Person object in

façade mode), then first the primaryPicture should be displayed, but if no picture is

4.3 Finding and managing information| 71

defined as primary, then it is desirable to display one of the other pictures (as opposed to

showing no picture at all). This is accomplished by displaying the primaryPicture property

in Both mode.

 When displaying the Person object in a view that lets the user choose the primary

picture, it is not desired to show all the other pictures as values for that property. On the

other hand, any descendant properties of primaryPicture should be displayed. This is

accomplished by showing the primaryPicture property using the Descendants mode.

 When displaying a list of all pictures for that person, it is desirable to include the primary

picture in this list as well. This can be accomplished by displaying the picture property in

Descendants mode.

Case 3

Let’s consider the same Person object but displayed using a façade view. Suppose the façade

view for a Person type shows, apart from the primary picture, also a displayName for that person

in BothWithTree mode. The PIM system will then try to find a single name to display by

searching through the properties in this order:

1. displayName

2. family_name or givenname

3. firstName

4. name

5. email

Even though email is not an ancestor of displayName, it is checked in BothWithTree mode as this

can be potentially useful substitute information when no name is available.

4.3.5. Tagging information

Tagging provides a quick and easy way of classifying information in a way that makes sense to a

user. As such, tags are not directly supported in RDF. However, they can be easily introduced in

the following way.

Each tag is an RDF resource belonging to the class Tag (see Figure 32). A tag is composed of just

its name. The name is encoded in RDF by prefixing it with a specific namespace. Therefore the

name itself must conform to the rules of creating RDF URIs (World Wide Web Consortium,

2004/c).

<<class>>

Tag

<<property>>

tag

rdf:range

Figure 32: Tags in RDF

Tags are associated with Objects and Values using the tag property. For example, the following

statements would be used to express that the specified picture is tagged with the words “biking”

and “holidays”:

<file:///c:/Pictures/img_990123.jpg> pim:tag tag:biking, tag:holidays .

tag:biking rdf:type pim:Tag .

tag:holidays rdf:type pim:Tag .

72 | Design

Although tags in RDF are serialized in the same manner as Objects, they are not treated as

Objects by the application.

Tags can be added to Objects and Values through the Object Details form. The user can search

for tagged objects by typing tags as keywords into the Simple search box.

4.4. External information
In order to manage distributed information, the PIM system must be able to access information

that is stored in external sources. Ideally, accessing external information through the system

should work as if the original source of information was used. This means that any changes to the

information on either end would be instantly visible on the other. For example, if an email arrives

in an email client, it is also visible in the PIM application. If a friend on Facebook modifies his

profile, those changes are reflected in the corresponding Person object right away. And if the

user modifies a To-Do Task object, the change would be visible in Microsoft Outlook’s To-Do list.

In theory, this could be achieved by directly accessing and manipulating data from external

sources using some API in real time. The RDF store would then hold information about additional

property values and links between objects from different sources – data that cannot be stored as

part of the original information sources themselves. However, this would make querying

information more complicated, as any query would have to operate on many disparate sources at

the same time.

Furthermore, such a setup would require an API that supports reading and writing any

information available in an information source, querying that information using a structured

query language, and it would have to be efficient enough to support real time operation. Most

existing software does not fulfill these requirements. For example:

 Microsoft Outlook does support reading and writing information, but querying tends to

be slow (Cruysberghs, 2007),

 For Mozilla Thunderbird it is difficult to find information about any documented API, it is

necessary to parse its mail storage files manually (Rea10),

 Facebook does have an API for reading and limited querying (FQL), but the latency of

using a remote web service might be too big for practical applications.

It is thus necessary to copy information from the original sources into the RDF repository and

then keep it synchronized. This problem involves choosing what external source of information to

use and which information from it is desired, then reading it in order to create an object

representation, and finally updating the original source with any changes to that information.

4.4.1. Selecting information

In order to work with external information, the user needs to choose which information is of

interest to them and which should be incorporated into the information repository of the PIM

system. Two approaches can be used here.

The user might choose a specific information object from an external source. This information

object would be imported with only the most essential related data. For example, a user received

an email and wants to annotate it with a To-Do Task. The user clicks on the email in the email

4.4 External information| 73

client and drags it to the PIM application window. The email is imported, along with information

about the associated contacts (sender and other recipients).

The user might also decide to import all information available in a particular source. This will

make it possible to use the searching and querying facilities built into the PIM system to find

objects that are of interest.

Both approaches are valid, and it is up to the user to decide which will be useful in a particular

situation. Some information sources might not support one approach or the other. Other

practical considerations might apply:

 Importing a whole dataset takes considerably more time than importing a single item.

The RDF repository used for storing this information will also grow in size. The user’s

information is effectively duplicated in the original source and the PIM system. This might

not be desired, if the user does not plan to manage that information through the system.

 Importing information involves identifying duplicates and reconciling references, as

described in Section 2.3.2. This automated process is not perfect. It might leave the user

with a lot of objects that need correcting. The user’s information repository will therefore

end up in an state where the information is not well-organized. This might not be desired

by the user.

4.4.2. Importing information

Each source of information requires its own dedicated module that will read and write data to it.

A module requires an ontology – a set of types and properties that will be used to map the data

model used by the source onto RDF. The mapping should be an injective one, so that

transformations from both the external domain to RDF and from RDF to the external domain are

possible.

A module must also choose a naming scheme that will uniquely identify all objects imported from

the external source. It must be possible to retrieve an object from the external source based

solely on this scheme. If the source already has some inherent scheme for identifying objects, it

can be used as a basis for an URI-based scheme, as required by RDF.

For each object in the external source, the module can then choose a suitable type, create an

object based on that type, assign it an URI based on the naming scheme and set values for the

object’s properties. Primitive values need to be converted to a format supported by RDF, while

references to other objects in the external source need to be corrected to point to the imported

objects.

After this process is completed, an RDF representation of the current state of data is obtained. It

could now be processed further to identify objects that already exist in the repository and merge

the external information with them. For example, when importing an email contact with a certain

email address, the RDF repository could be checked for Person objects having this email address.

The email contact could then be marked as being equivalent to the Person object. However, this

process is not intended to be performed by the prototype implementation. It is up to the user to

manually reconcile any references.

74 | Design

4.4.3. Synchronizing information

The module for accessing information from external sources needs to also take into account that

both the information in the external source and the one in the PIM repository can change. These

changes need to be propagated from one place to the other. The following strategy can be

employed for this purpose:

Whenever an object originating from an external source is modified in the PIM system, the

corresponding module is invoked to propagate the change to the external source. As any

property can be associated with multiple values, which is not always the case with data stored in

external systems (e.g. in Mozilla Thunderbird a contact can have only one given name and one

surname), the module will have to select a single value that will be exported.

The module is also invoked periodically to scan for changes in the external source. This involves

running the import process as described in the previous section, but comparing the resulting RDF

data with the one stored in the repository. The following rules are then applied:

 Statements that exists in the external source but not in the repository are added to the

repository.

 Statements that exist in the repository but not in the external source are deleted from

the repository.

 Statements that exist in both places are omitted.

Instead of running the module periodically, a plugin for the external source could be developed

that would monitor changes to that source and apply them to the repository.

4.4.4. Exporting information

When information is exported from the PIM system to external sources as part of the

synchronization described above, some special cases arise that are worth considering.

 New objects – An object can be exported to a source even if it does not originate from

that source. For example, a To-Do Task created in the PIM system could be exported to

Microsoft Outlook. In order for such export to be possible, the To-Do Task needs to be

assigned an URI corresponding to an object in Outlook.

 Local objects – When exporting an object identifying a resource on the local disk (e.g. a

locally stored image) to a source that is not located locally (e.g. Facebook), the resource

might need to be uploaded to a remote server.

 Merged objects – If two objects originating from the same source are merged (i.e.

defined as being equivalent), the module associated with that source might also merge

them in that source (i.e. delete one object and leave the other one). However, this

depends on the capabilities of a particular source – the remaining object must be able to

hold the information previously contained in the deleted one. For example, a

Thunderbird contact can hold up to two e-mail addresses. Therefore it wouldn’t be

possible to merge more than two Thunderbird contacts together.

4.5. Synchronization
People access and manage personal information from many locations: at home, at work, while

riding a bus, or on holidays in the wilderness. Naturally, it is not always possible to have an on-

4.6 Sharing information| 75

line connection to a single central repository of personal information. This requires that a copy of

some of the user’s information be available on a laptop or a mobile device that the user can take

with them.

However, having independent copies of the user’s RDF repository can lead to inconsistencies

when one copy is modified while the other is not. Fortunately, it is easy to synchronize data

between different repositories. All data in a RDF is stored in the form of triples. The repository

supports only two types of write operations: add or remove statement. All modifications of

existing values, such as changing the name of a person, involve removing the old triple and

adding a new one. In order to track the changes to the repository, it is sufficient to log all such

additions and removals. Such a change log can then be used to apply those changes to a different

repository. Modification timestamps can be used as an automatic means of resolving potential

conflicts.

The functionality of synchronizing data opens the possibility for more customizable ways of

accessing and keeping user’s personal information. For example:

 Central repository on a personal computer. The user can access the repository locally,

connect to it remotely when Internet access is available, or synchronize data with mobile

devices for off-line access. This however forces the user to keep his personal computer

powered on and on-line for remote access to be possible.

 Central repository on a server. The user might decide to host the central repository on an

Internet server and use other devices for connecting to it.

 No central repository. The user might treat all copies of their data repository on an equal

basis and synchronize them when needed. This, however, will make some of the data

unavailable until all repositories have been synchronized.

4.6. Sharing information
Sharing information that is available through the PIM system can be accomplished in number of

ways.

First, information can be already shared through the system’s functionality of synchronizing data

with external sources. One can use pictures from a disk folder to create a photo album and have

them exported to a social networking site.

Secondly, data can be published using standard formats associated with some of the ontologies

used in the system. For example, calendar information can be published using the iCalendar14

format and contact information using the vCard15 standard.

Furthermore, a dedicated web application can be created that would allow for publishing

selected resources for others to see. The web application can implement some of the same views

as were described earlier, but access to information would be read-only. Information presented

through these views can be annotated using microformats (Micro09), so that the underlying

semantic information can be exposed for other applications to process.

14

 http://tools.ietf.org/html/rfc5545
15

 http://www.imc.org/pdi/vcardoverview.html

http://tools.ietf.org/html/rfc5545
http://www.imc.org/pdi/vcardoverview.html

76 | Design

The main PIM application must permit the user to choose which information is to be published

through the web application. This can be accomplished on a per-object basis. Each object can be

marked with a “publish” flag. By default, this will result in all the properties of the object that

hold literal values to be published as well. Any linked objects will not be published automatically.

The user can review the list of object’s properties and explicitly choose which ones will be

published. Publishing a property results in all the values associated with that property (including

other objects) being marked with the “publish” flag.

4.7. Summary
This section has described how a generic application data model could be constructed so that it

would enable the user to define custom data structures on top of it. An overview of the types

and properties initially defined for testing its use for personal information management has been

given. The design also explains how the application’s model maps to an RDF database.

Furthermore, the core components of the user interface, such as views and the context menu,

which let the user interact with the data and modify the model have been described. The

application’s facilities for filing and retrieving information were explained. Then, a method for

incorporating external information into the system was described. The section concludes by

discussing issues related to synchronizing personal information between different installations of

the system and sharing information with others.

5.1 Three-tier design| 77

5. Implementation
This section presents how the system has been partitioned into major components and what

functions do they realize. It also discusses how the exchange of information between these

components is implemented. Then an overview of the user interface of the client application is

given. It concludes by providing an outline of the functionality that was included in the prototype.

5.1. Three-tier design
The prototype for the PIM system is composed of three major components:

 The client – an application that is directly operated by the user.

 The server – an application that acts as a proxy for interacting with the RDF repository

and external sources of information.

 The RDF Store – the triple store where all user data is kept.

The decision to create a client application that is separate from the server is not actually a

requirement of the model, but was dictated by the following considerations:

First of all, the implemented client prototype could be one of many possible client applications. A

web-based client or a client for mobile devices should also be possible to implement. Therefore

the Server should contain the logic that would be independent of the particular client

implementation.

Secondly, some of the tasks that the PIM system might perform could be long-running (such as

importing data) or require constant monitoring of external resources (e.g. in order to check if

new data is available, etc.) It is therefore reasonable to have a separate background process that

would be tasked with those functions.

Finally, such a division was dictated by the choice of implementation technologies. Most of the

RDF related technologies available today, such as triple stores and RDF extractors, are developed

in Java. This suggests that the whole system should be developed in Java, in order to minimize

the effort required to exchange information between Java and a different platform. However,

Java does not offer the best tools with respect to user interface development. In this respect,

Microsoft’s Windows Presentation Foundation (Microsoft) proved to have a lot of features whose

presence considerably simplifies the development of the user interface of the client. These

include:

 the ability to nest user interface controls within other user interface controls,

 databinding – using an object as a source of data for a UI control, and

 XAML – the ability to define user interface elements in XML.

5.1.1. System components

The architecture of the PIM system is given in the figure below:

78 | Implementation

Services

(Query,

Import)

Hessian

Data

Access

Layer
External

Services

RDF

User Interface

Object

Model

Data

Access

Layer

Hessian HTTP

Servlet

HTTP

Sesame Servlet

Store

Client

Server

RDF Store

C# /

WPF

Java

Figure 33: Architecture diagram of the PIM system

The user interacts with the system through the client. The client communicates with the server to

retrieve, save and query data, and to invoke other operations, such as importing data from

external sources. The server in turn communicates with the RDF Store, where all data is

ultimately kept.

The client is implemented as a .NET 3.5 application:

 User Interface – responsible for interacting with the user as described in Section 4.2,

implemented using Windows Presentation Foundation,

 Object Model – the object model on which the domain model is based, as described in

Section 4.1.1,

 Data Access Layer – used for exchanging data between the Object Model and the Server,

 Services – an interface for invoking structured queries on the Server and to control

services for importing data from external sources,

 Hessian (Caucho Technology) – a binary communication protocol available for many

platforms, including Java and .NET.

The server is implemented in Java 5 as a servlet running under Apache Tomcat:

 Data Access layer – used for exchanging data between the Client and the RDF store, it

implements the serialization and deserialization routines described in Section 4.1.2,

 External Services - used for importing data from external sources – this feature is

accomplished through the use of the Aperture framework (Ape09),

 RDF – a HTTP interface to the triple store used in the system, called Sesame (Aduna).

5.1.2. Third-party components

This section describes the third-party applications, libraries and classes that were used in the

implementation of the prototype. All of these pieces of software are either available under an

open-source license or the author has expressed permission on their website for the use of this

software.

Sesame

Sesame is an open source RDF framework with support for RDF Schema inferencing and querying

(Aduna). It provides a RDF repository which can be integrated in Java applications or run as a

5.1 Three-tier design| 79

standalone servlet, a Java API for interacting with the repository, a powerful RDF query language

called SeRQL, and an web console for interacting with repositories.

Hessian

Hessian (Caucho Technology) is a protocol intended as a light-weight replacement for SOAP

(World Wide Web Consortium, 2007). It was chosen for this project because an efficient way of

transferring data between the client and a server was needed. Its main advantage over SOAP

comes from the fact that the protocol is binary, as opposed to an XML encoding, which results in

less data to transfer.

Aperture

Aperture (Ape09) is a framework for extracting RDF data from various information sources,

including file systems (Microsoft Office documents, iCal calendars, JPEG images, PDF documents,

etc.), mail boxes (Thunderbird mail folders and address books, Microsoft Outlook objects, IMAP

servers) and websites (Flickr, Delicious).

It is used as the base of the External Services component (Figure 33) of the server. Effectively all

data that the prototype can automatically import from external sources is processed by this

framework.

Facebook FOAF Generator

As Facebook is an important source of information about a person’s friends and colleagues, it

was important for the prototype to be able to access the data located there. Unfortunately, the

Aperture framework did not support extracting data from Facebook. However, Matthew Rowe

has created a Facebook Foaf Generator (Rowe) application, which runs as any other Facebook

application and lets the user download an RDF file containing information about their friends

expressed using the Friend-of-a-Friend ontology. This file can then be imported into the

repository and the information it contains can be accessed using the client.

WPF libraries

This is a list of classes and libraries that were used in the implementation of the client for specific

GUI functionality:

 Avalon Controls Library16 is a set of WPF controls that were used in the client. In

particular, the following controls were used as part of the view for displaying date and

time values: DateTimePicker, TimePicker, DatePicker.

 DragCanvas class17 – A canvas that allows for dragging of the elements it contains. It was

modified for use as part of the view for displaying Notebook Pages.

 AutoCompleteTextBox class18 – A text box with an autocomplete feature. It was

modified for use as part of a control for choosing properties and types.

 CloseableTabItem class19 – A tab control with a closing button. Used as part of the

client application’s main window.

16

 http://www.codeplex.com/AvalonControlsLib
17

 http://www.codeproject.com/KB/WPF/DraggingElementsInCanvas.aspx
18

 http://www.codeproject.com/KB/WPF/WPFAutoCompleteTextbox.aspx
19

 http://geekswithblogs.net/kobush/archive/2007/04/08/CloseableTabItem.aspx

http://www.codeplex.com/AvalonControlsLib
http://www.codeproject.com/KB/WPF/DraggingElementsInCanvas.aspx
http://www.codeproject.com/KB/WPF/WPFAutoCompleteTextbox.aspx
http://geekswithblogs.net/kobush/archive/2007/04/08/CloseableTabItem.aspx

80 | Implementation

 WpfRichText project20 – A control for editing rich text, containing standard text-

formatting buttons (copy, paste, bold, italic, etc.) Used as a part of the RichTextView.

5.2. Exchange of information
Dividing the system into a client and server parts, while providing certain benefits, also

introduces additional complexity associated with transferring and synchronizing data between

the tiers. The prototype implementation uses the following approach to solve this problem.

5.2.1. Retrieving objects

The client maintains its own set of in-memory Persistent objects (see Section 4.1.1) which are

independent from the server. At any given time there exists at most one instance of any object,

as identified by its URI. This means that (e.g.) many views will operate on the same instance of an

object at the same time.

Data can be created, modified and deleted on the client without any interaction with the server –

all using the client’s in-memory state of the objects. If data from the repository is needed, it can

be retrieved via the server. It is possible to retrieve a full set of data associated with an object,

only a specific part of an object (e.g. certain properties) or only a list of object references

(without any data).

In order to retrieve a full object, the client sends a request to the server for that particular object

as identified by its URI. See Figure 34:

User

Client Server RDF Store

Request data
Fetch object by URI

Convert triples to objects

Return one or more objects

Update local objects

Execute query

Return RDF triples

Show results

Figure 34: Sequence diagram of requesting data from the server

The server, in turn, executes a query on the RDF Store to fetch all triples whose subject is equal

to the requested URI. Using the resulting triples, the server constructs an object representation

using the rules described in Section 4.1.2. Such an object is then transmitted to the client.

20

 http://www.codeproject.com/KB/WPF/wpf-richtexteditor.aspx

http://www.codeproject.com/KB/WPF/wpf-richtexteditor.aspx

5.2 Exchange of information| 81

The client receives the object and needs to incorporate the data it contains into its own in-

memory set of objects. This step is needed due to the following reasons. First of all, the

requested object might already exist on the client side and contain some data – it might have

been retrieved earlier with only partial data. Secondly, the object obtained from the server

contains references to other objects and these references need to be updated to point to objects

in the client’s memory. Converting a server object to a client one involves going through all the

properties of the object, checking if the local copy already contains such data, and if not, copying

it while correcting any references.

5.2.2. Querying for objects

Apart from fetching a single object from the server, the client can also execute structured queries

on the server. A special Query class has been created, which serves as an object representation

of the query, making it independent of the particular query language (such as SeRQL or SPARQL)

which might be used by the repository. A query contains a list of expressions joined by the logical

AND or OR operators. Each expression can introduce constraints on the subject, predicate or

object part of RDF statements through the use of comparisons (e.g. LIKE or EQUALS). For

example, the following query fetches all Trip objects that have a location property whose value is

the string “Norway” in English or “Norwegia” in Polish:

 Query q = new Query();

 q.add("pim", Repository.PIM);

 q.where("rdf:type","pim:Trip");

 Expression expr = q.where("pim:location").orExpr();

 expr.andExpr().label().like("Norway").language().like("en*");

 expr.andExpr().label().like("Norwegia").language().like("pl*");

Such an object representation would be converted to the following SeRQL query by the server:

SELECT DISTINCT QName

FROM {QName} rdf:type {rdfs:Resource},

 {QName} rdf:type {pim:Trip},

 {QName} pim:location {q0}

WHERE ((label(q0) LIKE "Norway") AND (lang(q0) LIKE "en*")) OR

 ((label(q0) LIKE "Norwegia") AND (lang(q0) LIKE "pl*"))

USING NAMESPACE

 rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>,

 rdfs = <http://www.w3.org/2000/01/rdf-schema#>,

 pim = <http://szyman.magres.net/pim/>

One thing to note about the above query is that it will return a list of URIs of objects that match

the specified constraints (we are SELECTing only the QName variable, which is the subject of all

statements). It is possible to add more variables to the SELECT part, which will result in additional

information being retrieved from the repository. In this way, only part of the information

contained in objects can be retrieved.

Retrieving only a partial set of information is important when displaying a list of many objects.

Completely loading all the objects on the list is usually not necessary, as only part of the data will

be displayed to the user, and is also time consuming.

82 | Implementation

5.2.3. Committing modifications

In order to propagate the changes to the in-memory data model back to the repository, the client

uses the Unit of Work pattern (Fowler, 2002 p. 184). The client maintains a list of objects that

have been modified – each object is assigned one of the following state values:

 Clean – the object is at least partially retrieved from the repository and no changes have

been made to it,

 New – the object does not exist in the repository,

 Modified – the object has been modified,

 Deleted – the object has been marked for removal from the repository,

 DeletedNew – the object does not exist in the repository and has been marked for

deletion.

Committing data to the repository is done periodically by the client. The user can modify a

certain set of objects and after some time a separate thread will pick them up and send the

modifications to the server. This process is outlined in Figure 35:

User

Client Server RDF Store

Modifies data

Periodic

commit

Find dirty objects

Identify changes

Commit changes

Update RDF store

Mark objects as clean

Figure 35: Sequence diagram for the data commit process

When the commit process starts, the client identifies objects which have pending changes (i.e.

which are in the Modified or Deleted state) and creates a set of Data Transfer Objects (Fowler,

2002 p. 401) corresponding to the original objects, but carrying only the original and new values

for the modified fields. For example, consider a Value object that originally contained the text

“hello”. The user modified that text to “hello world”. The resulting Data Transfer Object (of type

TransferValue) will contain both “hello” and “hello world”. Such an approach is needed as in

order to replace an existing value stored in the RDF repository, the old value has to be removed

and a new value needs to be added. This can only be accomplished if both the old and new values

are known. This is in contrast to standard relational databases, where replacing a value involves

just specifying a new value for a given field.

5.3 User interface| 83

As a further consequence of how the repository operates, it is necessary for the client to store all

the original values corresponding to all the values that were modified. Most of the user

information contained in the objects is stored in lists or sets – for example, an Object contains a

set of Properties, which in turn contain a set or list of values. The Data Transfer Objects for lists

and sets must contain the indexes and/or values of the elements that were added or removed.

Effectively, the contents of the Data Transfer Objects can be compared to a result of a difference

algorithm of two pieces of text.

Once the Data Transfer Objects have been created, they are sent to the server. The server just

needs to translate them into the addition and removal of appropriate RDF statements. After the

changes have been committed, the client can mark the modified objects as Clean.

5.3. User interface
The user interface of the client application consists of a single main window (see Figure 36). The

window is divided into three parts.

Figure 36: Main window of client application

The left pane provides a set of buttons that open predefined locations in the application. They

include links to views listing all objects of a specific type (Persons, Notes, To-Do Items, etc.) and

to a generic search function. The right pane (called “the sidebar”) usually contains the Object

Details form, which displays some overview information about a chosen object.

The middle pane is the place where all (object- and collection-) views are being displayed. When

a user clicks on an object displayed through a façade view (e.g. as one of the elements in a

collection), it will result in the object being opened in a new tab. Multiple tabs can be open at the

same time allowing the user to work with different objects and collections simultaneously.

84 | Implementation

Moreover, the user can click the “Move to sidebar” button to move the active tab to the right

pane (see Figure 41 in Appendix A). In this way, it is easy to drag-n-drop objects between

different collections as two different views can be active side by side.

Figure 36 illustrates how a view assembled from other views looks like. The active tab in the

middle pane displays the custom view for the Person type. This view is split into three regions:

Basic data, Picture and set of tabs containing more detailed information.

The Basic data section lists properties that provide an overall description of the person (e.g. given

names, surname, etc.) Each property is associated with a collection of values. Therefore a

collection view is used to display those values. In the illustrated case, the Alternative values

collection view is used. It displays a single value from the collection at a time, but the user can

click on the button (“…”) next to the value to switch to another one. Values can be added and

removed from the collection using the context menu. The Given name, Surname and Displayed

name properties hold string values. Therefore, the collection view uses the text editor view (see

Section 4.2.1) to render them.

The Picture section also uses the same Alternative values collection view to display the primary

picture associated with a person. However, instead of a text editor view, an image view is used.

To add more pictures to this collection, the user can just drag it from a disk folder or from a web

browser onto this collection.

The right pane shown in Figure 36 contains the details for the selected Person object. In

particular, it displays all other objects that reference this one. Here we can see that this person

belongs to a group called “Friends”. The referencing objects are displayed using standard façade

views. This means that it is possible to interact with them as with any other object displayed in

the application. In particular, one can invoke a context menu on these objects.

Figure 37: Client UI - context menu

The context menu can be invoked by right clicking on any view in the application. Figure 37 shows

the actions that can be executed when clicking on a group of elements.

5.4 Limitations| 85

More illustrations of the prototype’s user interface can be found in Appendix A.

5.4. Limitations
Most of the functionality described in the Design section was implemented in the prototype.

Some designed functionality was not implemented due to time constraints. In some cases, there

exists similar functionality to the one that was left out which can be used as a basis for

evaluation.

The following functions were not implemented in the prototype:

 Data model (Section 4.1)

o Only the Bag collection was implemented, and not the List collection. As a result,

all functionality related to the List collection has been left out of the

implementation. The impact of this is minimal, as the only difference between a

Bag and a List is the ordering of elements.

o The Range property of a Property is limited to a single Type, while the design

requires that it contain a set of Types. Again, the impact of this is minimal. Range

serves as a hint for the type of values that can be associated with a property. In

most cases, a single type is sufficient.

o Value objects (i.e. literal values such as strings, dates and numbers) can only be

persisted as an attached value. This means that it is not possible to annotate and

create links to values as one can annotate and link to normal objects.

 Presentation layer (Section 4.2)

o The NumberEditorView was not implemented. Numbers can still be edited as

normal text strings.

o SimpleCollectionView does not support grouping objects.

o Timeline view was not implemented.

o It is not possible to open the original application from which an information

object originated.

o It is not possible to open a collection in a separate view. A similar function works

for objects.

o The “Replace View…” action of the context menu was not implemented.

o The editor for custom views was not implemented. It is still possible to create

custom views by manually editing XAML files.

 Finding and managing information (Section 4.3)

o Searching for objects associated to a value through not more than N

intermediate objects.

o Extracting unstructured information from images is not implemented. It does

however work for text strings.

o Tagging information.

 External information (Section 4.4)

o The prototype is limited to importing information from sources supported by the

Aperture framework.

o Synchronizing information with external sources has not been implemented.

 Synchronization of information between multiple installations of the system (Section 4.5)

has not been implemented.

86 | Implementation

 Sharing information, as described in Section 4.6, has not been implemented.

The prototype implementation also requires work in terms of stabilization of the existing

features. Some problems that were discovered include (they are discussed later in the Evaluation

and Discussion chapters):

 Loss of user data related to concurrency issues.

 RDF triple store is slow when updating data.

 Insufficient inferencing support from the RDF repository

5.5. Summary
This chapter covered the details about the prototype implementation. The division of the system

into separate tiers was discussed together with the rationale for choosing certain

implementation technologies. An outline of the third-party components involved in the system

was given. Then, the process of exchanging information between the tiers was explained, which

included how objects are retrieved, queried and how modifications are saved to the RDF

repository. Afterwards, an overview of the client’s user interface was presented. Finally, the

status of the implementation, including a list of features that have not been included in the

prototype, was given.

6.1 Experimental difficulties| 87

6. Evaluation
This section starts by explaining what are the inherent problems in evaluation personal

information management systems and then tries to assess the model and its implementation by

examining the ability to realize scenarios, by discussing the benefits and drawbacks of certain

functionality and by investigating the potential for integration with new technologies.

6.1. Experimental difficulties
Evaluating the proposed model and its prototype implementation is a difficult task. Such an

evaluation can be performed through user experiments – observing how real people solve their

information management problems with the help of this system. However, there are a number of

problems associated with this approach that have led me to consider a different one. These

problems are described below.

First of all, the prototype does not implement all the functionality described in the Design

section. Due to time constraints, it was not possible to create such an extensive prototype. It is

therefore not possible to fully evaluate the model based on the prototype itself. Some of the

features that were left out often have corresponding similar features that were implemented,

but not all of them. For example, while annotating picture fragments can be evaluated on the

basis of annotating text fragments, there is no similar feature to the view editor.

Secondly, the prototype needs more work in terms of stabilization, fixing deficiencies in the

implementation and in third party components before it would be suitable for user testing. For

example, it was discovered that the RDF repository becomes extremely slow when updating data

after a certain number of triples have been entered into the system. This problem is related to

the implementation of that 3rd party component. Even though the updates are performed in a

background thread and do not directly lock up the system, the problem manifests itself in

different, perhaps even more serious way. While a chunk of data is waiting to be written to the

repository, any data it contains will not be returned when a user performs a query. In turn, it

might seem to the user that the information he or she just entered into the system has

disappeared.

Moreover, the user interface of the prototype is quite primitive. Only functions that were directly

related to the model of the system were implemented, but not necessarily in a user-friendly way.

For example, the prototype does allow the user to formulate a query by specifying a list of

constraints, but one might need to work with URI addresses for choosing objects. This can be

difficult to understand for the user. A polished user interface could offer a drag-n-drop

functionality instead.

Due to the above reasons, it would be difficult to conduct a user test with real people that would

evaluate the underlying model. The test results would be skewed by stability problems and user

interface deficiencies.

Additionally, there are some issues related to testing personal information management systems

in general. In particular, it is difficult to test these systems in an artificial environment, such as a

laboratory experiment. One of the reasons is that PIM happens over time. The effectiveness of an

action to file information, for example, can’t be assessed without also looking at later efforts to

retrieve this information (Jones, 2005 p. 53). But by forcing the user to file information and then

88 | Evaluation

retrieve it half an hour later we cannot really test this effectiveness. This is because humans have

memory or partial memory of all personal information that is kept (Larsen, 2005 p. 22).

Sometimes a significant amount of time needs to pass before it will be possible to examine if the

system makes it easier to retrieve information based on that partial memory.

Another such problem is related to the fact that it is difficult to use simulated personal

information instead of real one. Being personal, the user has at least partial memory of that

information. However, the user might be not willing to provide their own information due to

privacy concerns. On the other hand, using simulated information will eliminate memory - one of

the essential aspects of personal information management (Larsen, 2005 p. 183).

Based on the above considerations, I will try to evaluate the model and the prototype without

conducting user tests. Instead, I will assess its support for realizing the scenarios described in

Section 3, try to identify the benefits and drawbacks of specific functionality and consider the

model’s capabilities to interact with new technologies and approaches to keep and share

information.

6.2. Scenarios

6.2.1. Working on a project for a customer

This scenario describes the difficulty of finding information that is scattered across multiple

places and entities. Although the prototype implementation does not fully realize this scenario

(due to the effort required to implement the needed user-interface functionality), it does give the

tools necessary to effectively manage this information in a similar way. In fact, this also proves

the flexibility of this model. With more coding effort, a specialized view could have been created

that would let the user manipulate the information more effectively in a visual way. However,

the underlying structure would not change. The user is free to create new types and properties,

and also new views (though these need to be composed of existing ones).

The prototype supports importing e-mail messages from an IMAP server, which makes it possible

to connect to email accounts operated by many providers, including Gmail. The external data is

converted into e-mail message, e-mail folder and contact types, as described in the Foreign types

section. The user can thus browse through an e-mail folder in the PIM system to find the latest

messages, which resembles how such an action is performed in an normal e-mail application.

When a desired e-mail is found, the user can annotate (e.g. with a To-Do task) its text to mark

tasks that are requested by the customer. By doing this, the user identifies the relevant portions

of the email, which require some additional action to be taken, while the rest of the email can be

ignored. This reduces the amount of work required when the user has to revisit this email

message in the future – all important details have already been highlighted. Moreover, they can

then be viewed as entities that are separate from the email – e.g. a list using the Object Details

form. By extracting unstructured information, the user reificates it, allowing it to be treated in

the same way as any other information in the system. On the basis of that I argue that it provides

important value to the user.

6.2 Scenarios| 89

Figure 38: Realization of the "Working on a project..." scenario using the prototype

Each task marked in an e-mail message can be, in turn, annotated with a note. The note can

function as a central place where all information related to the task is stored. The user can drag

disk files, documents, other emails, web links, etc. onto the note as needed. They can also enter

their own comments as part of the note. Using this approach has several benefits:

 While a To-Do task is pending, this information is classified as ephemeral or working. It

can be reached from the list of pending to-do tasks. But once it is completed, it does not

disappear. It can be retrieved later by following links.

 It is easy to find where the notes and resources associated with a problem being worked

on are kept. The user can start with the e-mail message and follow links to find the

desired information. In fact, if the user can remember just a single object involved in the

note, it can be used as a starting point to find the note itself.

 The context menu for external objects allows the original application to be invoked. The

user can quickly reach those objects from the PIM application, allowing for more

specialized functionality to be contained in the original applications and not duplicated in

the PIM system. Unfortunately, it is not easy to implement the reverse functionality.

The scenario also describes how similar issues that appear in multiple emails could be merged

into a single one. As the prototype implementation does not support tags, the user would be

limited to manual searching for locating those similar items. Once found, however, they can be

easily merged.

Such merging of issues significantly reduces the user’s amount of work. Without such an ability,

the user could either leave the two issues as separate entities or merge them manually. The first

90 | Evaluation

solution leaves the user with two or more objects that represent the same thing. Information will

be scattered between them and finding something will require going through all of them. The

second solution would require the user to manually copy information from one issue to another,

replace all existing references to issue A with issue B and then delete one of them.

6.2.2. Semantic notebook

This scenario describes how small fragments of information can be linked and annotated to keep

the user organized. It can be almost fully realized using the implemented prototype.

The user can create a Notebook Page object and place some text onto it. Other objects, such as

Persons, can be also placed in the note as well. Just by placing objects in the note, all these

elements become linked with each other through their association with the Notebook Page. They

are grouped together not only visually, but also semantically. This means that the user can view

the relationships of one of these objects to discover the remaining ones. In this way, the problem

of filing a note in the appropriate folder or some other container is partially solved – the user

does not have to put the note in any particular place. It can be always found later by following

associations – if the user remembers just one of the objects that were contained in the note (e.g.

a particular person), they can use it as a starting point either for traversing links from one object

to another or for doing a search and specifying this object as one of the criteria. This approach is

in line with how the human mind operates (Bush, 1945) in terms of associating information and

makes use of the fact that a person has partial memory of that information (Larsen, 2005 p. 183).

Furthermore, the information contained in the note is not locked in its standard graphical

representation (DesktopView), as is the case with (e.g.) Microsoft OneNote. It can be also viewed

as a container that holds some objects, without regard for their X and Y screen coordinates. Any

CollectionView can be used to browse these objects, increasing the chance that one of the

available views will match what the particular user is looking for.

Continuing with the scenario, the user selects a fragment of text that was pasted to the note and

annotates it with a To-Do Task. A To-Do Task created in this way will appear in a list together with

other tasks, but is also linked to the text fragment and, indirectly, to the note. If a reminding

functionality was implemented in the prototype, by opening a pop-up window containing

information about a pending task, the user could go directly to the note. Compare how such a

use case could be realized with one of the traditional approaches – e.g. in Microsoft Outlook: It is

not only impossible to create a link to a fragment of text, but even linking to the whole note is

not supported. Instead, a user might create a to-do task and put a copy of the whole note in it.

This means that now two separate notes exist, which happen to initially have the same content,

but problems will quickly arise once the user decides to modify one of them. By using the

approach employed in the prototype, such inconsistencies are avoided.

The scenario also describes how a picture gallery containing images from different sources can be

created – the user finds their friends’ albums on Picasa or Facebook and drags images from there

into his or hers own album, combining them with the user’s own pictures. The prototype

supports pictures imported from the Web and from a local disk. This permits the user to freely

combine these images into a Photo Album, without paying special attention to their original

source – whether an image is dragged from a disk folder or from a browser window, the

application treats it in the same way. In this way, the strict boundaries between applications are

6.2 Scenarios| 91

loosened up – the information available through a computer can be accessed in a more unified

way.

Figure 39: Realization of the “Semantic notebook” scenario using the prototype

The user might also combine the albums in an even quicker way. If the albums from Picasa and

Facebook were imported into the PIM system (which is not implemented in the prototype), the

user could simply drag one album onto the other and specify that they are equivalent. This would

result in the system merging the contents of those albums together and instantly creating a

single one holding all the pictures.

In addition to creating a note about a current event – a form of ephemeral information – the

scenario also shows how the user’s long-term database can be updated in the process. In a

similar way as fragments of text can be annotated and linked, the user could mark portions of

images and link them to existing persons. These photos will then appear when viewing the

associated Person objects. Moreover, the scenario explains how a fragment of text representing

a person’s address can be associated with a person by dragging (this functionality was not

implemented for text fragments, but does work for other types of objects). The address will be

visible in the person’s profile from that point on. By reducing the amount of effort required to

classify information, thanks to operations such as dragging and dropping, the user will be able to

find this information in the future.

92 | Evaluation

6.2.3. Inviting people

This scenario describes how combining contact information from different sources helps in

finding the most up-to-date one, and how the process of inviting people can be improved. The

scenario can be mostly realized using the implemented prototype.

The user starts by creating a Notebook Page and adding custom properties to it. This function

gives the user the possibility to structure information in a way that is needed to fulfill a task. Even

though the Notebook Page type does not contain these properties, the user is not limited or

restricted by the properties that a given type provides. In this way, additional user-specific

information can be stored in a structured way, as opposed to putting it in a big textual

“Description” field which is often the case with other applications. Such a design gives the user a

lot of flexibility.

The scenario then describes how the contact information from external sources can be used to

find the best way to contact a person. In this respect, the system combines information

distributed among various sources and gives the user a central place where more information can

be stored. Thus it is possible to quickly get an overview of what is known.

One of the functions that cannot be realized with the current design is annotating an association

(i.e. a complete statement, composed of a subject, a predicate and an object). It is only possible

to annotate a particular object, and not the object in the context where it was used. This

limitation comes from the fact that there is no support for reification of statements, i.e. it is not

possible to treat statements as other objects in the system. During testing of the prototype this

was not identified as a very serious drawback, however as the scenario shows, there are some

use cases that require it. It should not be difficult to implement such a function in the future.

6.3. Functionality

6.3.1. Integrating information

One of the problems that are a consequence of the distributed nature of personal information is

information fragmentation and duplication. Different and unrelated formats, applications and

Internet services that are used for keeping information result in the information being scattered

between multiple places.

With existing applications, storing information is associated with certain risks. First, most

applications appear as data silos. They enable the user to work with some specific kind of

information, but do not interact with the outside world. Information in these applications might

be locked in. It might be necessary to duplicate it, if it needs to be reused in another application,

and this quickly leads to inconsistencies when the user updates information in one place but does

not do it in others. Secondly, with every new application that one uses, the old problems and

dilemmas for the user are getting worse - Where did I put my old information? Where to put new

information?

The system proposed in this paper eliminates these problems by functioning as the central place

where all the user’s personal information about a particular subject can be accessed and

modified. It is not yet another program for storing personal information. Its distinguishing feature

is the capability to import and synchronize information with other applications. Although the

6.3 Functionality| 93

prototype implementation is not capable of exporting information back to the original sources,

being able to read from some existing sources already provides great value. Information

fragmentation is reduced by being able to access existing data, and duplication can be eliminated

by using the equivalent objects feature.

Elimination of duplicate information can only work if it can be correctly identified so that only the

redundant one is removed. The model does not use any sophisticated methods for this purpose,

such as the ones described by (Dong, et al., 2005). Instead it proposes a simpler approach – the

user manually identifies entities that represent the same thing, while the system uses the

relationships between different ontologies (i.e. type and property similarity) to merge them

together. It has to be noted that this approach has some limitations: it requires manual work and

only the first level of data associated with an object is merged. Consider two person objects (P1,

P2) and two document objects (D1, D2). P1 is the author of D1, and P2 is the author of D2. Assuming

that P1 and P2 are the same, and so are D1 and D2, merging P1 and P2 will not automatically merge

D1 and D2. The user will have to first merge the persons, then merge the documents. However,

when working with real data (such as Person objects imported from the Thunderbird Address

book and from Facebook), most data existed in text form which was merged automatically and

the described limitation was not a problem.

The usefulness of specifying equivalent objects was quickly verified when working with real data.

The prototype has been tested with external information coming from IMAP servers (e-mail

messages, contacts), Facebook (profiles of friends), Mozilla Thunderbird’s Address Book (profiles

of e-mail contacts), and images (JPEG) and documents (Microsoft Word, text files) coming from

both the local disk and the Web. In particular, after importing Thunderbird contacts it became

apparent that there exist many Contact objects with different e-mail addresses, but representing

the same person (this is how Thunderbird’s Address Book works – each email address is usually

stored as a separate contact). Merging these objects and the Facebook profile for that person

together resulted in that information being represented by a single entity. All information related

to a person was then available in a single place, and not scattered between multiple entities.

The usefulness of the prototype is limited by the fact that it is not capable of accessing all of the

information that the user might be interested in. For each source of information there must exist

a dedicated module that will link it to the PIM system. This is a serious drawback of the system,

but one that cannot be easily overcome. It would require all applications to agree on a single

standard format for exchanging information, which is unrealistic due to many reasons, ranging

from technical to political. Thus the user will have to content his or herself with the limited set of

options that are available. Fortunately, many applications do support some form of external

interoperability. It might be therefore possible, maybe indirectly, to import this information into

the PIM system. Moreover, information storage in the system is “additive” – one can always add

new information and merge it with existing one. The user does not have to fear that by storing

some information in the PIM system and some in an unsupported application will prevent them

from combining it in the future. This is also one of the purposes of defining equivalent objects –

to merge together different pieces of information that all describe the same entity.

94 | Evaluation

6.3.2. Structured and unstructured information

One of the problems with existing applications is that they restrict the user regarding the amount

and type of information that they can keep in a structured way. For example, Mozilla

Thunderbird’s Address Book has a fixed set of fields for storing information about contacts. If one

would want to store some additional information, such as a list of bank account numbers, the

only option is to use a generic “notes” field.

The proposed system eliminates this restriction by allowing the user to store any amount of

additional information and of any type in a structured way. An existing information object (such

as a contact from Thunderbird’s Address Book) can be extended with additional properties. If a

desired property does not exist, the user can create a new one and specify the type of data that it

should hold (text, numbers, dates, images, etc.) And every property in the system can have

multiple values.

The system also provides support for describing the contents of unstructured data. A lot of

information that people work with on their daily basis exists in an unstructured form (i.e. it is

only intended by human, and not computer, consumption): e-mails, documents, pictures, audio

and video files, etc. This information cannot be queried in a robust way and it can only be viewed

as a whole – the internal structure, if there is any, is not visible to the computer.

The model proposes a method for marking fragments of text and images and extracting those

fragments as standalone entities. In this way, any underlying structure within a piece of data can

be identified by the user. These pieces can then be linked, annotated, queried, etc. in similar

ways as “normal” structured information. In this way, the user can manage their information

more thoroughly.

6.3.3. Linking and finding information

Linking and finding information are closely related. People associate some things with others in

their minds and through those associations they can recall them (Bush, 1945). It is therefore an

important feature of any information management system to be able to link information.

However, it is not easy to link information available through the computer. Every application uses

a different filing scheme, and there is no common way of addressing and accessing different

pieces of information.

The proposed system provides this functionality. It can address and access information from

different sources. It allows links to be created between any two information objects, regardless

of their type and origin.

In general, the prototype has experimented with finding information in the following ways:

 Listing all objects of a particular type.

The prototype UI provided links to lists of objects belonging to some predefined types

(including Person, Notebook Page, To-Do Item, Mail Folder). This method proved to be

the quickest one, provided that the number of objects was rather small. With increasing

amounts of information, it is often required to filter the results by specifying some

additional criteria. E.g. after importing friends from Facebook, it was necessary to filter

the list of people by name in order to quickly find the desired person.

6.3 Functionality| 95

 Following links between objects.

The user can start at one object and then view a list of all objects that reference the

selected one, together with the ones that this object references. Thus the same principle

as with recalling thoughts by association can be employed for finding information stored

on the computer. (Alvarado, et al., 2003) suggests that this is the preferred method of

finding information for many users. However, once the number of links is large, this

process also becomes more time consuming. This effect can be counteracted by filtering

the list of linked objects according to some criteria.

A special case of following links is finding an annotated object. In this case the annotation

(e.g. a note or a to-do task) usually has only one link leading to the object it annotates.

Therefore this object can be retrieved very quickly.

 Searching for objects based on some criteria.

The user can specify search criteria by describing the characteristics of the object they

are looking for. It was, however, observed that it is not always easy to specify a type of

an object being searched for or a property that some value might be assigned to. This is

due to the large number of types and properties that originate from the ontologies used

in the system.

It is worth noting that all of the above methods allow for seamlessly crossing application and

information type boundaries. As all information managed by the system is treated in a similar

way, any type of information can be retrieved by all of the above methods. Furthermore,

structured queries can be created that operate on information that was previously split between

different sources. This solves the problem of combined queries on distributed information as

described by (Dittrich, et al., 2005).

The ability to link, tag, annotate and supplement existing information reduces the effort needed

to file a piece of information so that it can be found later. The user is not forced to decide on an

elaborate filing scheme beforehand. They may just create an information object and find it later

by searching for some aspect of that information which the user remembers – e.g. associated

objects, a type, some text that was written, etc.

It was observed that it is not always easy to find information that was imported into the system

in large amounts (as opposed to dragging a particular item into the PIM window). This problem

was encountered when the complete set of messages or contacts were imported from an IMAP

server or from Mozilla Thunderbird. The original application provides a familiar interface for

finding information. For example, messages are found in folders, and contacts are listed in the

address book. The prototype does provide a similar view for folders and messages, but not for

contacts. As contacts do not necessarily represent persons (e.g. a contact could be an

organization), they are also not shown in the list of persons. A full list of contacts can only be

obtained by performing a search for all objects of the Contact type. However, this requires the

knowledge of the type name, which does not always have to be straightforward. As the list of

types increases, it might get increasingly difficult to find information that is not yet linked to

other user’s information.

96 | Evaluation

6.4. Potential

6.4.1. Personal information domains

Personal information management covers a broad set of domains that all have their specific

activities and needs related to keeping, organizing and retrieving information. Calendaring

requires reminding about upcoming meetings and events and communicating to settle on a

suitable time and ate. Task management involves prioritizing to-do’s while keeping track of the

dependencies between them. Contact management requires the ability to quickly contact a

person using different means of communication – an email, an instant message or a voice call. All

of these different domains have a thing in common – they form a part of a person’s body of

information. The information managed in one domain is not isolated and independent, but it is

shared with other domains.

Due to these considerations, a unified approach to personal information management, such as

the one proposed by the model described in this thesis, is beneficial to the user.

The data model used in this system (see Section 4.1.1) is designed as a generic data model that

can support any domain, with personal information management being just one of the possible

applications. The client application, in turn, is partly designed as a generic information editor. The

user can adapt the system to support the specific type of information they need to store.

Whether it is calendaring, task management or making a library of favorite movies, the system

just needs a set of types and views in order to support that activity. Some specialized activities,

such as sending an email or reminding, can be achieved by defining additional views

programmatically. In this way the capabilities of the system can be expanded even further.

6.4.2. Social communication

The rise of social networks and other services that focus on social interaction has lead to the

emergence of new forms of communication. People using Facebook can communicate by posting

a “status message” for their friends to see. They can also post pictures, videos and links.

Whenever they add a new person to their social network, this information becomes visible to

others. All these activities can motivate their friends to comment on them or indicate that they

“like” them. Users of Twitter communicate by posting short messages. However, these messages

are not organized in any particular way. Unlike Facebook, it is not directly possible to comment

on what someone else has said. Instead, people use various tags (e.g. “#iphone”, “#BBC”,

“@username”) to indicate what they are referring to.

This form of communication is very spontaneous. If a person finds something interesting, they

may comment on it. Unlike e-mail, these messages are usually very short. They may also be

scattered between various social networking sites that the person uses – there is no centralized

place, like an Inbox folder, where they reside. However, in a similar way to email, these messages

are static – once created, their contents does not change.

The model proposed in this thesis can be used for managing this kind of communication. In the

case of Facebook, the system might keep track of all items that a user has “liked” or commented

on. Such an item could be represented by an object of a corresponding type (e.g. StatusUpdate,

Comment, Link, Picture, etc.) Various metadata would be imported together with the item –

6.4 Potential| 97

posting date, associated user, etc. It would then be easy to find such an item by performing a

search and specifying the things that a person can remember about it.

Managing Twitter feeds could be accomplished by extracting the tags that each message carries

as separate objects – an automated version of the functionality for marking unstructured

information. The user could then find messages either by doing a keyword search or by following

links.

One of the benefits of using the PIM system for working with this type of communication is the

possibility of unifying it. The user could group together messages from different social networks

into threads or topics that are meaningful to him or her. If a topic involves other resources, such

as websites, pictures or videos, they can also be linked to that conversation.

6.4.3. Google Wave

Google Wave21 is an application being a mix of communication, collaboration and personal

information management systems. A user can create a wave, which resembles a collection of

documents. Each such document can contain rich text, photos, videos, maps, etc. A place in a

document can be a starting point of a new one. Waves can be shared between users and

modified by many people at the same time.

This kind of functionality enables many different applications. Google Wave can be used in a

similar way as email, where a wave contains a series of messages formed as a thread. Because

the modifications are visible in real time, it can be used as an instant messaging system. Due to

its support for rich content, it can be used as a collaborative document editing system, where

users can directly comment on different fragments of text. Various extensions (such as a

reservation confirmation gadget and a map annotation tool) make it well suited for sending out

invitations.

An interesting combination would be an integration of the system described in this paper with

Google Wave. The latter is a good communication and collaboration tool, but lacks support for

storing different types of structured information. The former enables the user to store and

retrieve different kinds of information, but does not (per design decision) have such extensive

sharing capabilities.

Wave can function as a frontend for different kinds of data managed by the PIM system. For

example, in the Inviting people scenario, Sue could publish the invitations as a wave. People

could indicate whether they are coming or not or add some comments, and this information

would be automatically visible in the PIM system. From there, Sue can annotate the comments

with to-do’s, if they require some attention on her part.

In general, different types of data from the PIM system could be exposed to outside users

through Google Wave, possibly through the use of some specialized extensions (such as the

reservation gadget). The PIM system will collect this data and let the user view and work with it

in different ways.

21

 http://wave.google.com/

http://wave.google.com/

98 | Evaluation

Integration of these systems should be possible due to the flexibility of the model proposed in

this thesis. For example, in a similar way as a wave is composed of different types of content

(text, videos, sub-waves, etc.), a Notebook Page can contain different types of objects (text,

pictures, other Pages). The main difficulty would come from the dynamic nature of the wave. A

method for synchronizing data would have to be developed.

6.5. Summary
The evaluation has shown that:

 The proposed model is flexible, as it supports alternative means to realize scenarios, can

support different types of activities and information, and can be integrated with new

ways of communicating and collaborating.

 Combining information from different sources enables it to be linked and queried

without regard for application and information type boundaries.

 The system supports an individual way of working with information. The user can

structure it as is needed to accomplish their task.

 This system gives the user more freedom in working with their information. The user is

not limited by the data types, structure of information and ways of viewing it that a

particular application may support. Additional information can be always stored in a

structured way.

 Extracting unstructured information lets previously indivisible bodies of data be

decomposed into their constituent parts. This enables them to be treated as any other

information in the system and makes them easier to find and manage.

 The gap between this system and other applications is reduced by allowing the user to

open an object in the application it originated from.

 The effort to file information so that it can be retrieved later is reduced when using this

model. Any part of a piece of information that the user can remember can be used as a

starting point to find it.

 Merging objects reduces the effort required to find information by eliminating

information fragmentation. It also keeps the user’s body of personal information

consistent and organized by removing duplicated information.

 The system enables the user to work with information stored in different places in a

similar way (e.g. combining pictures from disk and from the web).

 Annotating objects provides a quick way to retrieve them later. Due to integration of

information from many sources, any kind of information can be annotated.

 The separation of information from its visual representation lets it be viewed in ways that

are useful to the user.

7.1 Alternative design decisions| 99

7. Discussion
This chapter explains some of the design decisions that have been made while working on this

project and proposes some alternative solutions that could have been chosen. It also describes

the technical problems that have been encountered while implementing the prototype.

7.1. Alternative design decisions

7.1.1. Client-server interoperability

It has been stated earlier that the primary reasons for creating a separate client and server parts

of the system were to allow for the possibility of having different types of clients (web client,

mobile client, etc.), to have a background process where long-running tasks could be executed

and due to the choice of implementation technologies.

These are all valid reasons. In order to realize them, the initial approach was to implement the

object model (Section 4.1.1) and associated logic on the server side, and create a “dumb” client

that would only exchange data with the server and display it to the user. In this way, the logic on

the server side could be reused by different clients. However, as the design progressed it was

found that the client would have to contact the server many times for even the simplest tasks –

such as finding a property value to display. As this would result in much overhead for remote

method calls, most of the logic was moved to the client tier and the server is responsible only for

reading and writing data to the RDF repository.

In general, it was found that the application object model was the single most difficult part to

realize. The complexity of a data modal of a normal application (e.g. backed by a relational

database) depends on how precisely the details of a given domain are reflected in the design. For

example, an address book application might provide a fixed set of fields to the user and is not

concerned about all the other possibilities in which a person might be described and associated

with other things. In this system, the data model hard coded in the application is used to describe

another, different data model residing on top of it. This means that the data model needs to be

robust enough to support different ways in which a user could structure the data. The

functionality associated with types, objects, inheritance, type checking, collections, normally

offered by a programming language has to be implemented as part of the application.

Another problem that was observed is that the communication between server and client (which

is realized through the exchange of data transfer objects) results in a complex implementation

that is error prone. Each type of Persistent object requires two sets of data transfer objects – for

sending data to the client (these transfer objects resemble “normal” Persistent objects) and for

committing changes (these carry the old and new values for each field).

Several solutions to these problems are possible. One of them is to create a server which does

not function as a proxy between the client and the triplestore. The client would communicate

directly with the repository, eliminating the need for the data transfer object layer. The server

would still be required to execute background tasks, such as importing data, but would maintain

its own connection to the RDF repository.

Another solution would be to refactor the data transfer layer into a more generic one and replace

the plethora of objects with only a few. This would remove the problems associated with this

100 | Discussion

approach while keeping its benefits – the client is now designed in a way which makes it largely

independent of the underlying physical data model. It can support any model that would satisfy

the requirements of the application object model, but it does not have to be RDF. In principle,

the associative model (described in Section 2.4.4) could be used as well, although this would

introduce other problems. Another idea for a data model will be discussed later on.

Yet another solution, which was tested during this project, was to use an interoperability later

that would allow for executing Java code on the .NET virtual machine. Ja.NET22 is an open-source

implementation of the Java 5 SE SDK environment for .NET. In this scenario, the whole system

would be implemented in .NET only, with the Java code being an integral part. The client and the

server could be executed as one process, eliminating the need for a data transfer layer. They

would also share the same codebase, which means that for less robust client implementations

most of the logic could still be located on the server. However, Ja.NET is still in alpha

development stage and there were compatibility problems with the libraries used.

7.1.2. Physical data model

Instead of using the Resource Description Framework as the physical model for the system, a

similar model could have been constructed on top of a relational database. The rationale for

creating such a model from scratch would be to include functionality which is not directly

supported by RDF and has to be realized by certain workarounds. Some of these limitations are

listed below:

 It is not possible to directly reference the object part of the statement if it is a literal

value. Instead, a separate statement needs to be constructed

 It is not possible to reference a whole statement. The solution employed in RDF to

overcome this (creating a separate resource describing the original statement) can be

seen by itself as a “workaround” and can lead to inconsistencies if the original statement

is modified and the reified one is not.

 It is not possible to attach some application-level metadata to statements. For example,

storing such information as the date of creation or a deletion bit (indicating that a

statement was removed without actually removing it), would help in synchronizing data

between multiple installations of the system. It would also make it possible to provide a

history of changes to the user – e.g. the user could view how their body of information

evolved over time.

However, building such a model would require duplicating most of what RDF already does. It

would be difficult to recreate some of the advanced functionality that RDF stores already

implement, such as querying and reasoning. A better solution might therefore be to modify one

of the existing open-source RDF triple stores and introduce the needed changes. Sesame is a

potential candidate.

7.1.3. Custom views as RDF

The current design allows the user to define custom views, which are composed of other (custom

or built-in) views. The definition of a view is stored as a XAML document.

22

 http://www.janetdev.org/

http://www.janetdev.org/

7.1 Alternative design decisions| 101

The use of XAML was mostly an outcome of the selected UI framework – the Windows

Presentation Foundation – which uses XAML natively to describe user interface elements. From

the implementation point of view, it was convenient to use the features already offered by the

library – loading and saving user interface elements to XAML files.

However, an alternative choice was to use a custom ontology for describing views and persisting

them in RDF. This is an approach employed by the Haystack project (Huynh, et al., 2002).

Both approaches give the opportunity to exchange custom view definitions between different

users. Huynh, Karger and Quan given an example in which a new employee enters a company

with a large intranet. He can make use of the various custom views that other employees have

collected (or created) over time as his starting point for exploring the resources available as part

of this intranet (Huynh, et al., 2002 p. 6).

The advantage of RDF over XAML in this area would be that user interface elements could be

annotated in the same way as other data in the system. It would also be possible to query for

views that have a particular feature.

7.1.4. Data persistence

The implementation of the application object model, as described in Section 4.1.1, allows for only

a single instance of any Persistent object to exist at a given time. Such an approach was taken to

maintain consistency of the data across all views active in the application. For example, when one

of an object’s properties is modified in one view, the change will be automatically visible in

another.23

What follows from that design decision is that it is difficult to define a transactional boundary

that would encompass a certain set of modifications that a user has performed. It is possible for

the user to start editing an object in one view, then switch to another view to modify a different

object and then use a third view to link yet another object to the first one. All these changes take

application-wide effect immediately.

For this reason, the client does not have any UI elements such as “Save” buttons. Whenever a

change is made, a background thread will commit it to the RDF repository. The drawback of this

approach is that there is no transactional integrity with respect to a single object. The data is

saved in chunks, which contain changes done to all in-memory objects. If a problem occurs while

saving a particular chunk, it is difficult to determine which changes were committed (as part of

the previous chunks) and which not (i.e. are still waiting to be committed).

An alternate design could allow multiple instances of a single object. Then any view would

operate on a copy of the object’s data. Clicking the view’s “Save” button would commit the

changes to the repository and update the master in-memory copy of the object.

7.1.5. Partial loading of data

In a personal information management system, each information object can be linked to many

other ones. As such, the amount of data stored in association with an object can be quite large.

23

 Such functionality also requires a notification system that will inform all interested views that a particular
property value was modified and that they need to refresh the data being displayed. This is accomplished
using .NET’s databinding functionality, among others.

102 | Discussion

Preventing all data contained in an object from being retrieved whenever that object is

referenced is important from the performance and memory consumption points of view.

Consider, for example, that the user wants to browse a list of all the people he or she knows.

Each person object could have many properties associated with it – names, addresses, telephone

numbers, bank account numbers, e-mail addresses, etc. If an object is always retrieved in a fully

populated state, then all that data will be loaded for every object in the list, even though it is not

actually needed – the application will just to display a list of names.

The implementation of the object model (see Section 5.2.1) allows for objects to be partially

populated with data from the repository. However, this feature is currently not used to realize a

lazy loading pattern (Fowler, 2002 p. 200), due to other complexities involved:

First it has to be noted that it needs to be known up-front (i.e. before the data is requested from

the RDF repository) what properties of an object are actually needed. In this way a query can be

constructed that will fetch only those properties. An alternative approach would be to request

the value of each property at the moment it is actually needed – this would result in multiple

queries instead of one.

This list of properties can only be provided by the code responsible for requesting the data in the

first place. In most cases, this will be the view that renders an object on screen. If multiple

objects are displayed as part of a collection, each object will be rendered by its own façade view.

The choice of the view usually depends on the type of object. Therefore the view rendering the

collection must provide the types of objects that will be displayed, so that the corresponding

façade views can be analyzed to extract the properties they need. Not all of that information is

always available in advance.

Apart from the above problems, working with partially loaded objects is also complicated. In

particular, it is difficult to determine if the fact that the given data is not present means that it

does not exist at all or that it hasn’t been loaded yet. The reason for this is that data is obtained

as a result of executing queries, and queries (such as the ones constructed when the user is

specifying search criteria) can be arbitrarily complex. It is not trivial to determine whether a

query did not return a particular property value because it does not exist, or because it was

excluded by the search criteria. The solution is to execute a query that is known to produce the

desired result, and not rely on the data that might have been retrieved as part of user queries.

The design decision for prototype implementation was to always retrieve all data associated with

the object, therefore sacrificing performance for simplicity.

7.2. Third party components

7.2.1. Sesame

Sesame is the RDF store used to hold all data. Although it is already a stable and mature project,

it still lacks in certain areas that are of importance to the PIM system. The two primary problems

are performance and inference support.

Sesame’s native store is fast when it comes to retrieval of data, but as the number of triples

increases, the removal of small sets of statements becomes very slow. Every modification of data

7.2 Third party components| 103

in the PIM system involves the removal of old statements and the addition of new ones. It has

been observed that after importing profiles of just 50 Facebook friends, the update time for a

few statements increased to a couple of seconds. Fortunately, this problem is supposedly solved

by the latest version of Sesame.

Another problem involves the lack of support for OWL inferencing. This functionality is required

so that the use of inverse and symmetric properties would result in the automatic generation of

associated statements in the repository. Currently, this functionality is, to a limited extent,

emulated by the prototype.

7.2.2. Hessian

The Hessian protocol was used as a binary replacement for XML webservices. However, a few

problems were encountered when using it in this project:

 No support for generics. Even though both Java and C# do support generic collections

(such as List<T>), the protocol did not map C# types to corresponding Java types. As a

result, the Data Transfer Object classes could not use generic collections.

 Exception handling not working. Even though the protocol specification does support

passing exceptions from the server to the client, this functionality did not work in the C#

implementation that was used (called HessianC#24).

 Buggy implementation. The HessianC# implementation of the protocol proved to have

concurrency issues when multiple requests were being executed at the same time. A fix

was filed with the maintainers of that project.

7.2.3. Aperture

Aperture is the framework used for importing data from external sources. In Section 4.4.1 it was

described that it should be both possible to import all information contained in a datasource and

to select a single item that needs to be imported. Unfortunately, Aperture only supports the

former mode.

This is a serious drawback if one considers real-world applications. For example, my Inbox folder

in Mozilla Thunderbird contains almost 3000 messages. The size of the disk file which stores

those messages is around 1 GB. Most of these messages are kept for archival purposes and do

not need to be managed by the PIM system. However, due to Aperture’s limitation, in order to

manage only my newest messages I would be forced to import the whole Inbox folder.

24

 http://www.hessiancsharp.org/

http://www.hessiancsharp.org/

104 | Related works

8. Related works

8.1. Haystack
Haystack (Adar, et al., 1999) is a MIT research project started in 1997 with the aim to “develop a

tool that allows users to easily manage their documents, e-mail messages, appointments, tasks,

and other information” (Huynh, et al., 2002). There were four main goals to the project:

 Maximum flexibility to the user in organizing information.

 Treating different types of information in a similar way.

 Ease of manipulation and visualization of information.

 Delegation of tasks to automated agents.

As such, Haystack has many similarities to the system described in this paper. They both use RDF

for storing and describing data, both make it possible to import data from external sources,

provide the user with an ontology editor, and have a customizable user interface.

Haystack puts more focus on searching and retrieving information. For example, it observes how

a user follows links from one information object to another to offer a similar traversal path as a

hint in the future. It also uses various automated processes for extracting more information from

the data already contained in Haystack. For example, it might associate a person with document

by analyzing the document’s metadata and concluding that a person known to the user is an

author of that document.

This paper, on the other hand, concentrates on working with information from different sources.

The Haystack project doesn’t seem to be concerned with the implications of combining such

information except that it can be searched, grouped and annotated. In particular, it does not

have any mechanism for defining equivalence between information objects. Furthermore, the

data sources used for importing information seem to be used in a read-only fashion, i.e. once the

information is available in Haystack, any changes cannot be propagated back to the original

sources.

Moreover, Haystack uses RDF for its data layer and RDF Schema for the ontology definition, but

does not appear to use the benefits that come from defining a hierarchy of properties (see

Section 4.1.3), such as displaying more specific values when the user requests a more general

one. As the OWL specification (Bechhofer, et al., 2004) was first proposed in 2002 – when the

project was near its end, it also doesn’t support complex relationships between properties, such

as symmetry or inversion.

8.2. Chandler
Chandler (Open Source Applications Foundation) is an open-source information manager

intended for personal use and small group collaboration. The primary types of information that

can be managed include notes, e-mails, calendar entries, invitations, tasks and contacts. The

primary problem that Chandler attempts to solve is to limit the amount of tasks a user has to

keep track of at any single time. This is accomplished through triage – any information item can

be classified as requiring immediate attention (“now”), being postponed to a future date (“later”)

or marked as completed (“done”). Such a classification conforms to the frequency of use

categories as described by Cole (Cole, 1982).

8.3 NEPOMUK| 105

Chandler shares some similarities with the PIM system described in this paper. First of all, it tries

to integrate different kinds of information in a single place. The vision for the project was that it

should be possible to “drag and drop emails, documents, tasks and events into Chandler from

other apps” (Open Source Applications Foundation p. Product Plan Process). However, it seems

that the only type of information that can be imported into the 1.0 version of Chandler are emails

(Chandler operates as a replacement for an email client with support for the IMAP protocol),

tasks and calendar entries (from iCalendar files).

Secondly, Chandler uses a data model that allows treating different types of information in a

similar way - all content is stored in instances of classes that have a common base type.

Information items can be added to multiple collections, and the collections themselves are

modeled as items. The data model also supports adding attributes (such as string, binary or

integer values) to items. This provides some of the flexibility that is provided by RDF.

Despite the robust data model, the user interface doesn’t appear to allow the user to attach

arbitrary values to information items – a function that is supported by the PIM system described

in this paper. This is most prominently visible when one collects many types of information into a

note created in Chandler: text, references to people, website URLs, etc. are all put into a single

plain-text “content” field of a note item, where the meaning of those entities is lost and only

obvious to the human user. In contrast, a note created in the system proposed here (see Section

4.1.3) can contain different types of elements which retain their semantic relationships.

Another drawback of Chandler is that it is designed to function as a replacement for an e-mail

client. Being that e-mail plays an important role in personal information management - as a

popular means of communication which often results in other follow-up activities, such as

creating to-do tasks, notes, etc., this design decision might seem somewhat justified. However,

writing an e-mail client from scratch is an enormous undertaking on its own. It is doubtful that

Chandler will ever be able to compete with the functionality offered by (e.g.) Mozilla

Thunderbird25 or Microsoft Outlook. It forces prospective users to make a choice between having

a bad e-mail client that does personal information management and a good e-mail client that

doesn’t.

8.3. NEPOMUK
“NEPOMUK - The Social Semantic Desktop” was an European research project running from the

beginning of 2006 to the end of 2008 whose goal was to develop methods, data structures, and a

set of tools for building an environment for collaboration, personal data management, and

organization of information created by persons and groups (NEP10). One of the outcomes of this

project was the creation of the NEPOMUK (an acronym for Networked Environment for

Personalized, Ontology-based Management of Unified Knowledge) framework, which helps in

developing Semantic Desktop applications.

The concept of the Semantic Desktop comes from the idea of treating resources stored on a local

computer as web resources and using technologies developed for the Semantic Web (such as

RDF) to manage them - every file on the desktop can be seen as a resource, as every email, photo,

address book entry, and all other information we find on a typical PC (Sauermann, 2005). In this

25

 http://www.getthunderbird.com/

http://www.getthunderbird.com/

106 | Related works

view, systems such as Haystack or the one described in this paper qualify as Semantic Desktop

implementations.

The NEPOMUK prototype provides the user with a client application for managing personal

information. The user interface is divided into “perspectives”. Each perspective is composed of

one or more windows or tabs. For example, the “PIMO Perspective” lets the user browse a

hierarchy of classes and entries belonging to those classes. Clicking on a entry opens a tab

showing its details. This is somewhat similar to the way finding, viewing and editing object works

in the prototype described in this paper. However, it seems that the NEPOMUK client does not

provide customized views for different classes of data – it always presents a list of properties and

their values when editing class instances.

Another perspective is called “NepomukSimple”. It lets the user group resources into a collection,

called a “pile”, and then use specialized views to display certain properties of those resources.

For example, entries in the pile can be displayed on a map or as a timeline. This functionality is

similar to creating a normal collection in the PIM prototype described here and using different

CollectionViews for viewing it.

In contrast to this project and the Haystack project, NEPOMUK does not give the user the

possibility of defining custom views for information. It does, however, provide the means for

creating and modifying types.

Under the hood, NEPOMUK is a collection of a large number of components. It defines a set of

ontologies for managing different types of information that might be stored on a personal

computer. In comparison, this prototype only experimented with a few types. Both systems,

however, make use of OWL, which allows for specifying e.g. inverse and symmetric properties.

NEPOMUK can import data from external sources using the Aperture framework, which is also

used as part of the project described in this thesis. However, NEPOMUK’s design does not

provide support for synchronizing data with the original application. External data imported into

that system is treated as read-only.

The social and collaboration features of NEPOMUK include the ability to share metadata,

exchange instant messages, and a function for distributed search and storage.

Some of the other components include:

 A Thunderbird plugin for tagging emails and adding them to piles.

 A tool for tagging and annotating webpages.

 DropBox – a tool for quickly classifying files downloaded from the Internet.

 Recommendation Services – provide recommendations on related resources.

 Text Analytics Services – provide algorithms for natural language processing of

information to extract semantic relations.

8.4. Summary
The following table summarizes the differences between the systems described above and the

one described in this paper.

8.4 Summary| 107

 Haystack Chandler NEPOMUK This system

Specialized views for objects Yes Yes No Yes

Specialized views for collections (?) No Yes Yes

Defining custom views Yes No No Yes

Modifying the type system Yes No Yes Yes

Adding extra information in a
structured way26

No No Yes Yes

Working with unstructured
information

No No No Yes

Tagging information No No Yes Yes*

Annotating information No No No27 Yes

Linking information Yes No Yes Yes

Bidirectional relationships No No Yes Yes

Using external information Yes Yes Yes Yes

Synchronizing with external
sources

No Yes No Yes*

Removal of information
fragmentation and duplication

Automatic
analysis

No Automatic
analysis

Equivalent
objects

* This functionality is part of the design, but was not implemented in the prototype.

Table 6: Summary of differences between related PIM projects

The meaning of the items in the table is explained below:

 Specialized views for objects – Does the application provide different, specialized views

for objects depending on their type?

 Specialized views for collections – Is it possible to view collections in more than one way

(e.g. list view, timeline view, etc.), possibly depending on the type of objects in the

collection or on the type of the collection itself?

 Defining custom views – Can the user extend the system by creating new views?

 Modifying the type system – Can the user extend the system by creating new data

structures for storing information?

 Adding extra information in a structured way – Describes whether the application

supports adding new values to existing entities as named properties.

 Working with unstructured information – Does the application provide means in which

the user can annotate unstructured information, such as plain text and images? See

Extracting unstructured information in Section 3.4

 Tagging, annotating and linking information – Indicates whether the application has

support for adding tags, annotating existing information with notes or to-do’s and for

creating links between information objects that the user considers to be related.

 Bidirectional relationships – Does the data model make use of relationships (such as

symmetric or inverse) which automatically create an association between the source and

target entities and vice versa?

26

 Neither Haystack nor Chandler have support for this function even though their underlying data models
do support it.
27

 Although NEPOMUK does have an “Annotate” feature, it realizes what is called by “Linking” and
“Tagging” in this paper.

108 | Related works

 Using external information and Synchronizing with external sources – Is the system

capable of using information stored in external sources and propagating any changes

back to those sources?

 Removal of information fragmentation and duplication - The method used by the system

to eliminate duplicated information and to combine fragmented information. (Automatic

analysis involves some automatic process, e.g. text analysis; Equivalent objects – See

Section 2.3.2)

8.4 Summary| 109

9. Conclusion
The aim of this project was to propose solutions and provide insight into the problems of

managing distributed personal information in a unified way. Personal information in today’s

world is scattered between a large number of places. It is hard to get an overview of what we

know due to the different boundaries that current technology imposes. Every application

imposes its own way of organizing and working with information. A unified approach was

therefore investigated as a potential solution to these problems.

The research for this project has started with the realization that existing popular solutions to

personal information management are inadequate. An analysis of this problem has shown that

“personal information” can generally include any kind of information that a person is interested

in, while existing solutions restrict the user and even make the management problem worse by

contributing to information fragmentation. An examination of how information is distributed

between different sources has been performed and methods for unifying it have been described:

combining information representing similar concepts, using links to connect information objects

in a similar way as the mind associates thoughts, and using a single namespace to access

information located in different places. An analysis of data models that could be used for storage

of personal information revealed that the traditional approaches (e.g. the relational and object

models) are not flexible enough for this purpose. A more appropriate model – the Resource

Description Framework – supporting different ontologies, inferencing, extensibility and ease of

linking information, was chosen instead.

The design of a prototype application was preceded by an investigation of scenarios

demonstrating the benefits of unified distributed personal information management. The

analysis of these scenarios has further revealed the features that a PIM system must have. These

include flexibility in the amount and type of information that can be stored, the importance of

treating all data in a similar way, the ability to add structure to unstructured information and

later view that information in different ways.

Then, a system was designed that would solve some of the analyzed problems. It consists of a

generic application data model, which enables the user to define custom types and properties on

top of it. A mapping of this model onto RDF data has also been described. A number of data

structures (including Person, Picture, To-Do Task, Notebook Page types) for storing different

kinds of personal information have been defined on top of that model. The user interface

consists of different kinds of views that enable the user to interact with data. The system includes

the ability to compose views –complex views can be created from simpler ones. Additionally,

methods for filing and organizing information through linking, merging, annotating and grouping

have been described. Retrieval of information is facilitated by querying or following links

between information objects. The requirements associated with reading and synchronizing

external information have also been explained.

A three-tier system comprising a Windows client application, a Java server part and a (3rd party)

RDF repository has been implemented according to the design. The implementation-specific

details, alternative design decisions and technical problems have been discussed. It has been

found that most of the logic needs to reside on the client tier, which makes it difficult to reuse

implemented components if a client for a different platform were to be created. The RDF data

110 | Conclusion

model is lacking in terms of attaching metadata to whole statements, which makes it difficult to

provide synchronization and change tracking features. The selected approach for modifying data

(all changes take place immediately) makes it difficult to perform transactional updates. It was

also observed that a system like this needs the ability for lazy-loading of data. Some deficiencies

related to third-party components have also been described. Due to the time constraints on this

project, not all designed features were implemented in the prototype.

An evaluation of the model and prototype has been performed. Due to experimental difficulties,

user tests have not been conducted. Instead, the model has been evaluated based on the

realization of scenarios, examination of specific functionality and the potential for integration

with new technologies. The following novel characteristics have been identified:

 The model provides a user with a central place to store, organize and retrieve their

information. By synchronizing information with their original sources, the users body of

personal information is always consistent. Furthermore, information fragmentation and

duplication is reduced by merging equivalent objects. Even though this is a manual

method, it can be used for resolving real world cases.

 The model also improves the way that unstructured information can be managed. By

assigning meaning to unstructured information, the underlying structure can be exposed

to the PIM system. This information can then be viewed in new ways, linked, annotated

and can be retrieved more easily.

Other evaluation findings include:

 The model is flexible enough to support different ways to realize scenarios and does not

restrict the user in terms of the amount and type of information that can be stored.

Approaches to tighter integration with Facebook, Twitter and Google Wave have been

positively evaluated, which also confirms this flexibility.

 Integration of different sources allows for information to be linked and queried without

regard for application boundaries. It also removes the restrictions imposed by external

applications in terms of storing and viewing data. The user is free to structure

information in an individual way.

 The effort to file information was reduced considerably by increasing the amount of

metadata that can be used to find it later.

Addressing the questions formulated in the problem definition for this thesis, it was found that:

 Integration of sources is the primary enabling factor that significantly increases the value

of other functionality offered by the system. Accessing information from various sources

has been considered in other works, such as Haystack (Huynh, et al., 2002) or NEPOMUK

(NEP10), but the unique feature of this model are the provisions for synchronizing

information with those sources. This makes it possible to work with information available

through the computer system in a unified way - as if the boundaries imposed by the

division of data into applications did not exist.

 Storing different kinds of new information enables the user to freely collect any

additional information that might be worth keeping, without being limited by the type

and amount of information that an existing application allows one to store.

8.4 Summary| 111

 Combining, linking, assigning meaning, tags or other metadata to information has

multiple uses. Merging equivalent objects helps reduce information fragmentation and

duplication, which results in the user’s body of information being better organized.

Linking information allows the user to be explicit about the relations that exist between

different entities. Together with tagging, it reduces the effort needed to file information

so that it can be easily retrieved later. In addition, assigning meaning to unstructured

information opens new ways in which it can be managed – once it is decomposed into

individual items, these can be linked, annotated, grouped and viewed independently.

 Organizing information into meaningful groups can be realized as a function of linking.

Information can be organized better if it can be a part of multiple groups at the same

time, however this is not usually possible with popular existing applications.

 Presenting information in a way that is useful to the user can be accomplished by

combining two different functions. The user can choose between different ways of

visualizing information. They can also formulate queries that select specific information

objects. Together this enables different properties of objects to be summarized in a

single view.

 Sharing information with others is simplified by the system’s ability to work with different

sources. Selected parts of user’s information can be published to social networks. New

technologies, such as Google Wave, can be used as a public frontend to the user’s body

of information.

Due to the time constraints on this project, some ideas and functions are still waiting to be

developed. There are a few dimensions along which this project could be continued:

 More features. Not all the views described in the design were implemented in this

prototype. New ways of presenting information could be developed. Moreover, the

proposed model tries to eliminate user dilemmas regarding the choice of an application

by integrating information from many applications. Dilemmas concerning modification of

existing information could be eliminated by introducing a change tracking feature.

 Tighter integration. Working with data stored in external sources is limited to just a few

applications and in read-only mode. The prototype could be further developed in the

direction of supporting more types of sources and, more importantly, allowing data to be

synchronized with those sources. Furthermore, client applications for different platforms

(mobile, web, etc.) could be developed, which would let the user access their personal

information repository from any place.

 More extensive prototype. The prototype implemented during this project is not suitable

for conducting user tests. However, it would be interesting to develop it further (in terms

of stabilization, improving usability, etc.) and to see how this model is evaluated by real

people.

112 | <References

10. References
DCMI Metadata Terms. [Online] [Cited: November 9, 2009.]

http://dublincore.org/documents/dcmi-terms/.

FQL. Facebook Developer Wiki. [Online] [Cited: January 11, 2010.]

http://wiki.developers.facebook.com/index.php/FQL.

Bugzilla. [Online] [Cited: May 4, 2009.] http://www.bugzilla.org/. (Bug09).

Aperture framework. [Online] [Cited: December 7, 2009.] http://aperture.sourceforge.net/.

(Ape09).

DBpedia homepage. [Online] [Cited: December 2, 2009.] http://dbpedia.org/About. (DBped09).

Gnowsis. [Online] [Cited: January 16, 2010.] http://www.gnowsis.org/. (Gno10).

NEPOMUK - The Social Semantic Desktop. [Online] [Cited: January 16, 2010.]

http://nepomuk.semanticdesktop.org/. (NEP10).

Reading Thunderbird emails from a java application. [Online] [Cited: January 11, 2010.]

http://forums.mozillazine.org/viewtopic.php?p=2296839#2296839a. (Rea10).

The Trac Project. [Online] [Cited: May 4, 2009.] http://trac.edgewall.org/. (Trac09).

what-are-microformats. Microformats Wiki. [Online] [Cited: October 14, 2009.]

http://microformats.org/wiki/what-are-microformats. (Micro09).

Adar, Eytan, Karger, David and Stein, Lynn Andrea. 1999. Haystack: per-user information

environments. CIKM '99: Proceedings of the eighth international conference on Information and

knowledge management. 1999, pp. 413-422. http://doi.acm.org/10.1145/319950.323231.

Aduna. Sesame. [Online] [Cited: January 06, 2010.] http://www.openrdf.org/.

Alvarado, Christine, et al. 2003. Surviving the Information Explosion: How People Find Their

Electronic Information. 2003. MIT AI Memo AIM-2003-006.

Bechhofer, Sean, et al. 2004. OWL Web Ontology Language Reference. W3C Recommendation.

February 10, 2004. http://www.w3.org/TR/owl-ref/.

Berners-Lee, Tim, Fielding, Roy and Masinter, Larry. 2005. Uniform Resource Identifier (URI):

Generic Syntax. 2005. Request for Comments: 3986.

Boyd, Danah M. and Ellison, Nicole B. 2007. Social Network Sites: Definition, History, and

Scholarship. JOURNAL OF COMPUTER MEDIATED COMMUNICATION, ELECTRONIC EDITION. 2007,

Vol. 13, no. 1, pp. 210-230.

Breslin, John and Decker, Stefan. 2007. The Future of Social Networks on the Internet: The Need

for Semantics. IEEE Internet Computing. Nov./Dec. 2007, Vol. 11, No. 6, pp. 86-90.

8.4 Summary| 113

Breslin, John G., Decker, Stefan and Bojars, Uldis. 2008. The Future of Social Networks on the

Internet: The Need for Semantics. Presentation at the Semantic Technologies Conference 2008 in

San Jose. May 19, 2008. http://url.ie/e46.

Brickley, Dan and Miller, Libby. 2007. FOAF Vocabulary Specification 0.91. [Online] November 2,

2007. http://xmlns.com/foaf/spec/20071002.html.

Bush, Vannevar. 1945. As We May Think. The Atlantic Monthly. July 1945.

Caucho Technology. Hessian Binary Web Service Protocol. [Online] [Cited: January 6, 2010.]

http://hessian.caucho.com/.

Cole, I. 1982. Human aspects of office filing: Implications for the electronic office. In Proc. of the

Human Factors Society - 26th annual meeting. 1982. pp. 59-63.

Cruysberghs, Stefan. 2007. .NET - Querying Outlook and OneNote with LINQ. [Online] November

14, 2007. [Cited: January 11, 2010.] http://scip.be/index.php?Page=ArticlesNET05&Lang=EN.

Dey, A.K. 2000. Providing Architectural Support for Building Context-Aware Applications. College

of Computing, Georgia Institute of Technology. 2000. Ph.D. thesis.

Dittrich, Jens-Peter, et al. 2005. iMeMex: escapes from the personal information jungle. VLDB

'05: Proceedings of the 31st international conference on Very large data bases. 2005, pp. 1306-

1309.

Dohmann, Friedhelm. ECCO PRO still alive. [Online] [Cited: August 31, 2009.]

http://www.compusol.org/ecco/.

Dong, Xin and Halevy, Alon. 2005. A Platform for Personal Information Management and

Integration. In Proc. of CIDR. 2005.

Erickson, Thomas. 2006. From PIM to GIM: personal information management in group contexts.

Commun. ACM. 2006, Vol. 49, no. 1, pp. 74-75.

http://doi.acm.org.globalproxy.cvt.dk/10.1145/1107458.1107495.

Fowler, Martin. 2002. Patterns of Enterprise Application Architecture. s.l. : Addison-Wesley

Professional, 2002.

Hillmann, Diane. 2005. Using Dublin Core. Dublin Core Metadata Initiative. [Online] November 7,

2005. [Cited: September 9, 2009.] http://dublincore.org/documents/usageguide/.

Huynh, David, Karger, David and Quan, Dennis. 2002. Haystack: A Platform for Creating,

Organizing and Visualizing Information Using RDF. AAAI Technical Report WS-02-11. 2002.

Jones, S. R. and Thomas, P. J. 1997. Empirical assessment of individuals' "personal information

management systems". Behaviour & Information Technology. 1997, No. 16(3), pp. 158-160.

Jones, William. 2008. How is information personal? In Proc. of PIM Workshop, SIGCHI. April 5-6,

2008.

114 | <References

Jones, William. 2005. Personal Information Management. The Information School Technical

Repository, University of Washington, Seattle. 2005. Technical Report.

http://hdl.handle.net/1773/2155. IS-TR-2005-11-01.

Jones, William, Munat, Charles F. and Bruce, Harry. 2005. The Universal Labeler: Plan the Project

and Let Your Information Follow. Proceedings of the American Society for Information Science

and Technology. 2005, Vol. 42, No. 1.

Karger, David R. and Jones, William. 2006. Data unification in personal information

management. Commun. ACM. 2006, Vol. 49, No. 1, pp. 77-82.

Larsen, Jakob Eg. 2005. NEXUS. A Unified Approach to Personal Information Management in

Interactive Systems. Technical University of Denmark. 2005. Ph.D. Thesis, CICT Ph.D. Series No. 6.

Lazysoft. Lazysoft Technology: Sentences. [Online] [Cited: January 10, 2010.]

http://www.lazysoft.com/technology_sentences.htm.

Lelli, Francesco, et al. 2008. NEPOMUK user guide. 2008. Deliverable D6.7.A.

http://nepomuk.semanticdesktop.org/xwiki/bin/view/Main1/D6-7-A.

Malone, Thomas W. 1983. How do people organize their desks?: Implications for the design of

office information systems. ACM Trans. Inf. Syst. 1983, Vol. 1, no. 1, pp. 99-112.

http://doi.acm.org/10.1145/357423.357430.

Microsoft. Naming Files, Paths, and Namespaces. MSDN Library. [Online] [Cited: December 4,

2009.] http://msdn.microsoft.com/en-us/library/aa365247%28VS.85%29.aspx.

Microsoft. OneNote Home Page. Microsoft Office Online. [Online] [Cited: September 4, 2009.]

http://office.microsoft.com/en-us/onenote/default.aspx.

Microsoft. Windows Presentation Foundation. MSDN Library. [Online] [Cited: January 4, 2010.]

http://msdn.microsoft.com/en-us/library/ms754130.aspx.

Microsoft. XAML Overview. MSDN Library. [Online] [Cited: January 4, 2010.]

http://msdn.microsoft.com/en-us/library/ms752059.aspx.

Montalbano, Elizabeth. 2009. Forrester: Microsoft Office in No Danger From Competitors. PC

World. [Online] June 4, 2009.

http://www.pcworld.com/businesscenter/article/166123/forrester_microsoft_office_in_no_dan

ger_from_competitors.html?tk=nl_dnx_h_crawl.

Open Source Applications Foundation. Chandler - The Note-to-Self Organizer. [Online] [Cited:

December 29, 2009.] http://chandlerproject.org/.

O'Reilly, Tim. 2005. What Is Web 2.0. [Online] September 30, 2005. [Cited: November 9, 2009.]

http://oreilly.com/web2/archive/what-is-web-20.html.

Rowe, Matthew. Facebook Foaf Generator. [Online] [Cited: January 8, 2010.]

http://www.dcs.shef.ac.uk/~mrowe/foafgenerator.html.

8.4 Summary| 115

Sauermann, Leo. 2005. The Gnowsis Semantic Desktop for Information Integration. Proceedings

of the IOA 2005 Workshop at the WM. 2005. http://www.dfki.uni-

kl.de/~sauermann/papers/Sauermann2005a.pdf.

Schoen, Seth. 2009. What Information is "Personally Identifiable"? Electronic Frontier

Foundation. [Online] September 11, 2009. [Cited: December 2, 2009.]

http://www.eff.org/deeplinks/2009/09/what-information-personally-identifiable.

Szymaoski, Piotr. 2009. Requirements for distributed personal information management. 2009.

DTU Special course.

Teevan, Jaime, Jones, William and Bederson, Benjamin B. 2006. Personal Information

Management. Communications of the ACM. 2006, Vol. 49, No. 1, pp. 40-43.

Williams, Simon. 2000. The Associative Model of Data. s.l. : Lazy Software Ltd, 2000.

World Wide Web Consortium. 2004/s. RDF Vocabulary Description Language 1.0: RDF Schema.

[ed.] Dave Beckett. W3C Recommendation. February 10, 2004/s. http://www.w3.org/TR/rdf-

schema/.

World Wide Web Consortium. 2004/c. Resource Description Framework (RDF): Concepts and

Abstract Syntax. W3C Recommendation. 2004/c. http://www.w3.org/TR/2004/REC-rdf-concepts-

20040210/.

World Wide Web Consortium. 2001. Semantic Web Activity Statement. World Wide Web

Consortium. [Online] 2001. [Cited: December 2, 2009.]

http://www.w3.org/2001/sw/Activity.html.

World Wide Web Consortium. 2007. SOAP Version 1.2 Part 0: Primer (Second Edition). W3C

Recommendation. 2007. http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

World Wide Web Consortium. 2008. SPARQL Query Language for RDF. January 15, 2008. W3C

Recommendation. http://www.w3.org/TR/rdf-sparql-query/.

World Wide Web Consortium. 2004/d. XML Schema Part 2: Datatypes Second Edition. W3C

Recommendation. October 28, 2004/d. http://www.w3.org/TR/xmlschema-2/.

116 | Appendix A

Appendix A
Figure 40 shows how a Simple collection view is used to display a list of Person objects. Each

Person object is rendered using a PersonFacadeView, which displays the primary picture and the

display name of that person.

Note that some pictures and names were blurred to preserve privacy of their owners.

Figure 40: Client UI - a list of Person objects

Figure 41 shows how the sidebar can be used to operate the application in “split-screen” mode.

In this mode the user can work with two views at the same time. It is therefore easy to drag

elements from one view to another.

8.4 Summary| 117

Figure 41: Client UI - editing a note

	Abstract
	Preface
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem definition
	Contributions
	Report structure

	Analysis
	Personal information
	Definition
	Characteristics
	Frequency of use
	Internal structure
	Topology
	Type of medium
	Confidentiality
	Source

	Sources
	Metadata
	Tags
	Context
	Links
	Types

	Related problem domains
	Information management
	Content management
	Time management
	Contacts management
	Communication
	Psychology
	Group information management

	Commercial management approaches
	Microsoft Outlook
	Microsoft OneNote
	Ecco Pro

	Figure 1: Ecco Pro's calendar view
	Summary
	Combining distributed information

	Figure 2: A diagram of relationships between information sources
	Applications and concepts
	Duplicated and fragmented information
	Applications and data
	Linking and annotating
	Technical requirements
	Representation and storage
	Files and directories
	Relational model

	Figure 3: Table in the relational model
	Object model
	Associative model

	Parent is subtype Person
	RDF model

	Figure 5: Sample RDF graph
	Schemas and ontologies
	Serialization, stores and querying
	Availability of RDF data
	Summary
	Summary

	Use cases
	Working on a project for a customer
	Problem
	Analysis
	Solution

	Figure 6: Conceptual illustration of the UI for the “Working on a project…” scenario
	Remarks
	Semantic notebook
	Story

	Figure 7: Conceptual illustration of UI for the “Semantic notebook” scenario
	Remarks
	Inviting people
	Summary
	Type system
	Multiple ways to view information
	Annotating objects
	Linking and grouping objects
	Object equivalence
	Accessing distributed information
	Extracting unstructured information
	Sharing information
	Intuitive user interface

	Design
	Data model
	Application
	Objects and values

	Figure 8: Objects and values
	Figure 9: Persistent objects hierarchy
	Figure 10: Classes for storing primitive values
	Type and property hierarchy

	Figure 11: Objects, properties and types
	Figure 12: Type and property hierarchy
	Equivalence and similarity

	Figure 13: Equivalence and similarity for objects, types and properties
	Physical
	Objects
	Collections
	Values
	Types and Properties

	Figure 14: Diagram of all relationships owned by Properties and Types
	Equivalence
	Ontology
	Basic types
	Person

	Figure 15: UML class diagram for the Person type
	Picture

	Figure 16: UML class diagram for the Picture type
	To-Do Task
	Notebook Page

	Figure 17: UML class diagram for the NotebookPage type
	Location

	Figure 18: UML class diagram for the Location type
	Photo Album

	Figure 19: UML class diagram for the Photo Album type
	Trip
	Foreign types
	Important relationships

	Figure 20: UML class diagram for title properties
	Figure 21: Equivalence relationship between title properties
	Figure 22: UML class diagram for hierarchy of name properties
	Presentation layer

	Figure 23: UML class diagram for View classes.
	Figure 24: View properties
	Built-in views
	Value views
	Outline view

	Figure 25: Diagram of the OutlineView
	Desktop view

	Figure 26: Diagram of a DesktopView
	Façade view
	Xaml view and Typed Outline view

	Figure 27: UML class diagram for TypedOutlineView items
	Simple Collection view
	Alternative values Collection view
	List view
	Timeline view

	Figure 28: Diagram of a TimelineView
	Custom views

	<v:XamlView …>
	</StackPanel>
	View selection
	Context menu
	View editor
	Ontology editor
	Internationalization
	Finding and managing information
	Searching for objects
	Related information
	Annotating objects
	Linking objects

	Unstructured information

	Figure 29: Information fragments data model
	Summarizing information
	Case 1

	Figure 30: Example property hierarchy and values
	Case 2

	Figure 31: Relations between picture properties.
	Case 3
	Tagging information

	Figure 32: Tags in RDF
	External information
	Selecting information
	Importing information
	Synchronizing information
	Exporting information

	Synchronization
	Sharing information
	Summary

	Implementation
	Three-tier design
	System components

	Figure 33: Architecture diagram of the PIM system
	Third-party components
	Sesame
	Hessian
	Aperture
	Facebook FOAF Generator
	WPF libraries

	Exchange of information
	Retrieving objects

	Figure 34: Sequence diagram of requesting data from the server
	Querying for objects

	SELECT DISTINCT QName
	USING NAMESPACE
	Committing modifications

	Figure 35: Sequence diagram for the data commit process
	User interface

	Figure 36: Main window of client application
	Figure 37: Client UI - context menu
	Limitations
	Summary

	Evaluation
	Experimental difficulties
	Scenarios
	Working on a project for a customer

	Figure 38: Realization of the "Working on a project..." scenario using the prototype
	Semantic notebook

	Figure 39: Realization of the “Semantic notebook” scenario using the prototype
	Inviting people
	Functionality
	Integrating information
	Structured and unstructured information
	Linking and finding information

	Potential
	Personal information domains
	Social communication
	Google Wave

	Summary

	Discussion
	Alternative design decisions
	Client-server interoperability
	Physical data model
	Custom views as RDF
	Data persistence
	Partial loading of data

	Third party components
	Sesame
	Hessian
	Aperture

	Related works
	Haystack
	Chandler
	NEPOMUK
	Summary

	Table 6: Summary of differences between related PIM projects
	Conclusion
	References
	Appendix A
	Figure 40: Client UI - a list of Person objects
	Figure 41: Client UI - editing a note

