
Compact Message Exchange Protocol
1. INTRODUCTION.. 2

2. COMMUNICATION MODEL... 2
2.1. PEER-TO-PEER COMMUNICATION.. 2
2.2. TERMINOLOGY ... 2

2.2.1. Message object ... 3

3. PROTOCOL SPECIFICATION .. 3
3.1. THE PROTOCOL LINE... 3
3.2. PROTOCOL COMMANDS .. 4

3.2.1. Command syntax .. 4
3.2.2. HLO command ... 4
3.2.3. MSG command ... 4

3.2.3.1. Message body.. 5
3.2.3.2. Field definition line ... 5
3.2.3.3. Multiline data line ... 6
3.2.3.4. Message end marker line... 6
3.2.3.5. Peer response... 6

3.2.4. MSS command .. 7
3.2.5. ERR command .. 7

4. THE CMEP PROCEDURES .. 7
4.1. SESSION INITIATION.. 7
4.2. MESSAGE EXCHANGE ... 8

4.2.1. Exchange model ... 8
4.2.2. Encoding... 9
4.2.3. Field types .. 9

4.2.3.1. StringData.. 10
4.2.3.2. IntData... 10

4.3. RETURNING STATUS INFORMATION .. 10
4.3.1. Informational 1xx .. 10

4.3.1.1. Keep-alive 100 ... 10
4.3.1.2. Alive 101 ... 10

4.3.2. Successful 2xx .. 10
4.3.2.1. OK 200 .. 10

4.3.3. Reserved 3xx.. 10
4.3.4. Peer Entity Error 4xx ... 10

4.3.4.1. Bad Request 400.. 10
4.3.4.2. Malformed Message 401.. 11
4.3.4.3. Reserved 402.. 11
4.3.4.4. Reserved 403.. 11
4.3.4.5. Module Not Found 404 ... 11
4.3.4.6. Method Not Allowed 405... 11
4.3.4.7. Session Uninitiated 406.. 11

4.3.5. Internal Errors 5xx... 11
4.3.5.1. Internal Client Error 500 .. 11

1. Introduction

The objective of the Compact Message Exchange Protocol is to efficiently exchange data
structures between entities.

The protocol is independent of any particular transmission subsystem and requires only an
underlying reliable ordered data stream channel1, such as TCP or RFCOMM.

Special attention has been given to the issue of minimization of protocol overhead and at the
same time maintaining clear-text readability of the protocol. Because of this the construction
of the protocol is a balance between a low-bandwidth approach and ease of debugging.

2. Communication model

2.1. Peer-to-peer communication

Host A Host B

Reliable transport channel

The protocol employs a peer-to-peer communication model. In this model, both connected
parties are equivalent in their status, i.e. there is no distinction in the protocol itself between a
server side and a client side. This distinction might be implied by the actual types of the
parties; for example a mobile phone will act as a client when communicating with a central
server.

2.2. Terminology
This document uses the Augmented Backus-Naur Form for expressing protocol constructs, as
defined in RFC 42342. We also define some basic terms in the BNF notation:

lchar = %x00-09 / %x0B-xFF ; line-char

dchar = ALPHA / DIGIT ; alfanum

nchar = ALPHA / DIGIT / ‘.’ /
 ‘_’ / ‘-‘ ; name-char

1 “RFC 2821: Simple Mail Transfer Protocol”, April 2001
2 „RFC 4234: Augmented BNF for Syntax Specifications: ABNF”, October 2005

2.2.1. Message object
A message object is a basic form of exchanging user data payload between peer entities
defined in this protocol. A message object is a collection of fields. Each field has three
associated attributes:
� field name – used to uniquely identify the field in the message,
� field type – used to specify the type of payload carried by the field,
� field value – contains the user data payload.

Apart from containing user data fields, a message object also carries information about its
sender and the desired recipient. Both of these fields represent entities, such as class methods,
procedures or subroutines, at the transmitting parties. That is, a message communication takes
place between certain pieces of application code.

Recipient Sender Priority

Message header

Message contents

Name

Message field 1

Type Value

Name

Message field 2

Type Value

Message

The above figure presents a structure of simple, two-field message object. The meaning of the
Priority field is described in the MSG command section.

3. Protocol specification

3.1. The protocol line
The basic transmission unit that is considered as a whole is the protocol line:

line = *lchar LF

meaning a line of ASCII characters ranging from 0 to 255 (except 10) terminated with an
ASCII 10 (linefeed) character.

The communicating parties can thus buffer an incoming stream of bytes until a new-line
character is received and then pass it on to further processing.

There are two types of protocol lines that are defined in the protocol. The first one is a
command line (see Command syntax), which is used to indicate a request to execute a given
command on the other end. The second one is a message line (see MSG command), which
carries user data associated with a certain message object. The definition of a protocol line
can be thus presented in this form:

line = command_line / message_line

3.2. Protocol commands

3.2.1. Command syntax
Each command has the following syntax:

command_line = command_id [SP parameters] LF

command_id = 3*ALPHA

3.2.2. HLO command
The HLO command is used to initiate a new session. It is used by both parties to show that
they can speak the CMEP protocol. The structure of the command is as follows:

command_id = “HLO”
parameters = client_name ‘/’ client_version SP
 client_midp

client_name = *nchar
client_version = *dchar
client_midp = *VCHAR

The client_name field is used to identify the client software (e.g. “wavu”), client_version
identifies the version of the software (e.g. “1.0”) and client_midp can be used to convey
information about the mobile clients capabilities.

An example HLO command can look like this:

HLO wavu/1.0 MIDP2 Bluetooth

3.2.3. MSG command
The MSG command is used to indicate the start of a transfer of a message object to a certain
receiving entity at the other end. It is the main protocol command for transfer of user data. It
has the following syntax:

command_id = “MSG”
parameters = recipient SP sender SP priority

recipient = *nchar
sender = *nchar
priority = DIGIT

The recipient field identifies the entity that is to receive the message. This can be a name of a
class and a method to execute on a server, a unique identifier for an instantiated class, or some
other means of identifying the receiver. The sender field contains similar data but identifying
the sender entity of the message. The priority field is used to indicate the transmission priority
of this message and at the same time uniquely identifies all the parts that comprise the
message.

An example MSG command can look like this:

MSG Security.Auth.login 3 1

The above command indicates that the sender will transmit a message with priority 1 from
entity “3” to destination entity “Security.Auth.login”. The message body will follow this
command.

3.2.3.1. Message body

The body of the message is comprised of multiple message lines:

body = *message_line

message_line = priority specifier line_data LF

specifier = ‘:’ / SP / ‘.’

line_data = *lchar

There are three different types of message lines, that are distinguished by the specifier field.
The methods for encoding a message object using these lines are discussed in Message
exchange.

3.2.3.2. Field definition line
The field definition line is a message line whose specifier is set to „:” (a colon). This line is
used to indicate the name of the field and the type of data that it contains. This line can also
carry a single line user data payload.

The line_data for this field has the following format:

line_data = field_name SP field_type [‘=’ field_value]

field_name = *nchar
field_type = 1*3nchar
field_value = *lchar

The field_name field specifies the name of the message field. The name can be empty, but
otherwise the names SHOULD be unique within the message object. The field_type is a 3-

character string that identifies the type of data that is carried in this field. This information
allows the communicating parties to properly interpret the data. For a list of defined field
types, see Field types in the Message exchange section.

The field_value element, carrying the user data payload, is present only if the whole user data
payload can be represented in a single line, i.e. it does not contain any linefeed characters.
Otherwise this element is omitted, and the user data payload is transmitted using multiline
data lines.

An example field definition line may look like this:

1:password str=my_password

In the above case, the field “password” contains only a single line of data, “my_password”. If
a multiline payload was sent, the definition line could have looked like this:

1:password str

and the actual data would follow in multiline data lines.

3.2.3.3. Multiline data line
The multiline data line is a message line whose specifier is set to “ “ (a space). This line is
used to transmit each line of the user data payload that is comprised of multiple lines (i.e. it
contains at least one ASCII 10 – linefeed – character).

This line has the following format of line_data:

line_data = *lchar

The above definition means that this line contains a single line of user data payload.

An example multiline data line could look like this:

1 this is a singleline of my data

3.2.3.4. Message end marker line
The message end marker line is used to indicate the end of the message object. Once the
receiver encounters this line, it can pass the message buffer to a message decoder function.
This type of message line is identified by a specifier field set to “.” (a dot).

This field has no meaningful line_data defined.

An example message end marker line would be:

1.

3.2.3.5. Peer response
After receiving a message object the receiver MUST send an ERR command to indicate
whether the message was received correctly and got to its destination.

3.2.4. MSS command
The MSS command has the very same structure and meaning as the MSG command, that is it
is used for transferring message objects, except for a single difference. The user data payload
transmitted in an MSS message is encrypted.

Note: Only the user data payload undergoes encryption. None of the other protocol fields, like
field name, field type, etc., are encrypted.

The encryption scheme is discussed in another section of this report.

3.2.5. ERR command
The ERR command is used to report a status code to the peer. The format of the command is
as follows:

command_id = “ERR”
parameters = code recipient priority title

code = 3DIGIT
recipient = *nchar / ‘-‘
priority = DIGIT / ‘-‘
title = *VCHAR

The code entity indicates a status code returned by the peer. For a list of status codes, see
Status codes. The recipient field can either contain the name of the entity at the other end that
should receive this status message, or “-“ (a dash) to indicate that the entity is unknown. The
priority field indicates the message priority of the message that generated the status code, or a
dash if the priority is unknown. The title field contains a descriptive message of the status
code.

An example ERR command might look like this:

ERR 200 3 1 OK

4. The CMEP Procedures

4.1. Session initiation
To initiate a CMEP session, a party should first establish a reliable stream connection to a
peer. Once such a communication channel is available, the party accepting the connection
MUST send a HLO command. The initiating party MUST then respond with its own HLO
command.

An example session initiation might look as follows (the “>” and “<” characters indicate the
accepting and initiating parties, respectively):

> HLO server/1.1
< HLO wavu/1.0 MIDP 1.0 Bluetooth

After a session initiation completes, message exchange can then take place.

4.2. Message exchange

4.2.1. Exchange model

Host A Host B

Class X Class Y

Message

Method Xyz Method Yxz

The message exchange model describes the procedure of sending a message object from one
party to another. As messages are actually exchanged between pieces of application code (i.e.
classes, procedures, etc.), the sender and recipient of a message are usually methods invoked
at the respective ends.

The procedure for sending a message is as follows:

1. The sender creates a new empty message object and sets the message header fields
(name of recipient, name of sender, message priority).

2. The sender adds any fields it wants to send in the message by encoding each field
according the rules defined for the corresponding data type.

3. The sender put the message in the outgoing buffer for the given priority, line by line.
4. The sender periodically checks the outgoing buffer for different priorities and

transmits a line out of each buffer in such a way, that the buffers with higher priorities
will be given some preference.

The receiving end performs the following procedure:

1. Reads each incoming byte into an incoming buffer.
2. Once a linefeed character is encountered, the receiver checks for the type of line that

was received:
a. If the line conforms to the message_line specification of field definition line or

multiline data line, the receiver strips off the priority digit and adds the
remaining bytes to a incoming buffer corresponding to the message priority
represented by the digit.

b. If the line conforms to the message_line specification of message end marker,
then the receiver should parse the whole incoming buffer for the associated
priority.

c. If the line conforms to the command_line specification, the receiver processes
the given command. In particular, if the command_id is “MSG”, then the
receiver should create an empty buffer for incoming data with the specified
priority.

d. Otherwise, the receiver should discard the line and return a “400 Bad Request”
status message.

4.2.2. Encoding
The protocol does not impose any special encoding rules for the transmitted user data
payload, except for proper encoding of linefeed characters.

Once user data payload is represented by a certain field type, and thus encoded in the manner
required by that field type (called the field_payload), it must undergo separation into
individual message lines. This procedure can be carried out as follows:

1. If the field_payload does not contain any linefeed characters, it is represented as a
single field definition line with field_value equal to field_payload, and the procedure
terminates.

2. Otherwise, a field definition line without any field_value is outputted.
3. For each occurrence of a linefeed character in field_payload, a separate multiline data

line is outputted containing a portion of the field_payload ranging from the byte
following the previous occurrence (or from the beginning of field_payload) up to the
current occurrence, but not including the linefeed character itself.

4. If field_payload ends with a linefeed character, then it is represented by an empty
multiline data line.

To illustrate the above procedure consider the following two examples.

If the message of priority 2 is to contain a field “fullname” of type StringData with the
following contents:

Smith, John T.

then it will be represented as a single field definition line in the message:

2:fullname str=Smith, John T.

If on the other hand, the same message is to contain a multiline field “address” of the type
StringData with the following contents (note the empty line at the end):

46000 Center Oak Plaza
Sterling, VA 20166

it will be represented by the following message lines:

2:address str
2 46000 Center Oak Plaza
2 Sterling, VA 20166
2
2

4.2.3. Field types
Field types specify the data types that may be carried using the protocol and special type-
specific encoding considerations. As defined in the MSG command section, each field type is

identified by a 3-character string and can carry an arbitrary stream of bytes (that do not,
however, contain a linefeed character):

field_type = 1*3nchar
field_value = *lchar

4.2.3.1. StringData
The StringData type is used to carry unformed string information. There is no special
encoding of the payload:

field_type = “str”
field_payload= *OCTET

4.2.3.2. IntData
The IntData type is used to carry a signed integer value.

field_type = “int”
field_payload= [‘-‘] *DIGIT

4.3. Returning status information

4.3.1. Informational 1xx
These codes are used to inform the other end about the current status of the program.

4.3.1.1. Keep-alive 100
This code is sent to the peer entity in order to test whether the other end is responding. The
peer entity MUST respond with a “101 Alive” status code.

4.3.1.2. Alive 101
The reception of this status code informs the receiver that the other end is still capable of
sending communication.

4.3.2. Successful 2xx
These codes are used to inform that a desired protocol operation was completed successfully.

4.3.2.1. OK 200
This status code informs the receiver that the last message was received properly by the other
end.

4.3.3. Reserved 3xx
These status codes are reserved for future extensions to the protocol.

4.3.4. Peer Entity Error 4xx
These status codes are used to notify the peer entity that the data it sent was improper.

4.3.4.1. Bad Request 400
An unknown protocol command code was received or the protocol line did not conform to
any known formats.

4.3.4.2. Malformed Message 401
A malformed message object was received.

4.3.4.3. Reserved 402
This status code is reserved for future use.

4.3.4.4. Reserved 403
This status code is reserved for future use.

4.3.4.5. Module Not Found 404
An unknown module was requested in the Recipient field of the message object.

4.3.4.6. Method Not Allowed 405
The Recipient field of the message object identifies a proper module, but this module does not
allow the given method to be executed.

4.3.4.7. Session Uninitiated 406
The session initiation procedure was not completed properly.

4.3.5. Internal Errors 5xx
These status codes are used to notify the peer entity about a problem at the receiver’s side that
was not caused by improper data.

4.3.5.1. Internal Client Error 500
The application experienced an unidentifiable error.

5. References
1. “RFC 2821: Simple Mail Transfer Protocol”, April 2001
2. „RFC 4234: Augmented BNF for Syntax Specifications: ABNF”, October 2005

	Compact Message Exchange Protocol
	
	1. Introduction
	2. Communication model
	2.1. Peer-to-peer communication
	2.2. Terminology
	2.2.1. Message object

	3. Protocol specification
	3.1. The protocol line
	3.2. Protocol commands
	3.2.1. Command syntax
	3.2.2. HLO command
	3.2.3. MSG command
	3.2.3.1. Message body
	3.2.3.2. Field definition line
	3.2.3.3. Multiline data line
	3.2.3.4. Message end marker line
	3.2.3.5. Peer response

	3.2.4. MSS command
	3.2.5. ERR command

	4. The CMEP Procedures
	4.1. Session initiation
	4.2. Message exchange
	4.2.1. Exchange model
	4.2.2. Encoding
	4.2.3. Field types
	4.2.3.1. StringData
	4.2.3.2. IntData

	4.3. Returning status information
	4.3.1. Informational 1xx
	4.3.1.1. Keep-alive 100
	4.3.1.2. Alive 101

	4.3.2. Successful 2xx
	4.3.2.1. OK 200

	4.3.3. Reserved 3xx
	4.3.4. Peer Entity Error 4xx
	4.3.4.1. Bad Request 400
	4.3.4.2. Malformed Message 401
	4.3.4.3. Reserved 402
	4.3.4.4. Reserved 403
	4.3.4.5. Module Not Found 404
	4.3.4.6. Method Not Allowed 405
	4.3.4.7. Session Uninitiated 406

	4.3.5. Internal Errors 5xx
	4.3.5.1. Internal Client Error 500

	5. References

