
Server for the wavu mobile client.
By Piotr Szymański szyman@magres.net.

Table of contents
1. INTRODUCTION.. 2

2. PROJECT OBJECTIVES... 2

3. SERVER DESIGN ... 3

3.1. TECHNOLOGIES USED .. 3
3.2. OVERALL SERVER STRUCTURE .. 3
3.3. LOW LEVEL IO LAYER... 5

3.3.1. Thread management ... 6
3.3.2. Data flow management... 7

3.4. APPLICATION LEVEL PROTOCOL .. 7

4. TESTING METHODOLOGY AND RESULTS ... 8
4.1. METHODOLOGY... 8
4.2. RESULTS.. 9

5. SUMMARY...................................BŁĄD! NIE ZDEFINIOWANO ZAKŁADKI.

6. REFERENCES ... 10

 1

mailto:szyman@magres.net

1. Introduction
The wavu mobile groupware application was developed by Igor Kowalczyk, Piotr

Wardaszko, Marcin Więckowski and myself for the Mobile Platform Application
Development course at the Technical University of Denmark. The goals of the project were to
create a friendly application that would help the user in:

� keeping personal notes and synchronizing them with others,
� exchanging short messages over Bluetooth and Internet connections.

The mobile client was written in Java 2 Micro Edition [1] (J2ME). The server was
written in PHP for an easier integration with the web environment.

This project is done in cooperation with Piotr Wardaszko.

2. Project objectives
The objective of this project was to rewrite the server using a more suitable language

than PHP. As PHP is primarily a web scripting language, it is not very suitable to build
standalone server applications. Its primary drawback is the lack of high-performance socket
operation capabilities and the lack of support for threads – only separate processes with
shared memory (however, this shared memory cannot be utilized directly to share variables
between processes).

As the mobile client is implemented in Java, this language was the most obvious choice
for the server platform, as it would make it possible to share some code between the two
applications. The server was designed with the following goals in mind:

� Support a large number of simultaneous clients (in the range of thousands),

which all maintain a single active TCP connection for the duration of the whole
session.

� Have a scalable architecture – support multiple processors.
� Be independent of the persistent storage mechanism – different database types,

non-SQL databases, etc.
� Be capable of supporting different communication protocols for possible future

uses (possibly not only a server for the wavu application).

The server obviously has to be capable of providing the same services which were also

provided by the PHP version of the server. The mentioned services include:

� User authentication
� Contacts (“buddy-list”) and presence information management
� Notes and folders management
� Chat over TCP connection.

As this project is done in cooperation with Piotr Wardaszko, we have divided the work

between ourselves in the following manner:
� Conceptual design and UML modelling was performed in strict cooperation.
� My colleague is responsible mainly for the persistence layer (database schemas,

data objects and all the associated processing) and stronger encryption support.
� I am responsible for the networking layer (socket IO mechanism, application

level protocol, worker thread management).

 2

3. Server design

3.1. Technologies used
In order to fulfill the project design goals, the following technologies were employed:

� Java Platform Standard Edition 6.0 Virtual Machine
� java.nio package for high-performance non-blocking IO operations
� java.util.concurrent package for thread pool management
� Java Data Objects (JDO) for the persistence mechanism
� Log4j package for logging support.

In my description I will concentrate on the parts which were my responsibility.

3.2. Overall server structure
The server architecture is based upon the following primary components:

� Instances of the Client class, which represent the connected clients and hold

their associated data.
� Services which provide certain functionality that is available to the clients.
� Protocols which provide a means of communication between the connected

Client and the Services offered by the server.

Due to this design, the server can be used to offer different services using many types of

protocols. The diagram below illustrates the mentioned architecture:

 3

+Client(in mgr, in channel, in protoName)
+disconnect()
+getPrivateService()
+getSharedService()
-isAlreadyStarted()
#onDisconnect()
+getProtocol()

-id : int
Client

+add(in client : C lient)
+remove()

ConnectionManager

+acceptConnection()
+acceptInput()

-protocol
Listener

-mgr1

-clients*

-mgr1

-listener1

Oversees the clients and the servers
(i.e. listening sockets)

Represents a connected client

Listens for incoming connections,
incoming data on channels, etc.
and dispatches these events to
appropriate handlers.

*

1

+Protocol(in channel : C lient)
+getProtocol(in name : string, in channel : ClientChannel)
+run()
+onConnect()
#onDisconnect()
#onDataAvailable()

protocol::Protocol

protocol::CMEP protocol::Echo

Echo test protocol

-client1

-protocol1

services::Service

1

-services*

Services used by
the client.

When a new connection is detected,
Listener constructs a new Client.

Each client uses some
protocol for communication.

+close()
+addReadInterestNow()
+removeReadInterestNow()

ClientChannel

1

-channel 1

Stores information about the client,
the server that received the connection
and the communication channel between them.

1

-client 1

 4

3.3. Low level IO layer
The solution for the low level IO and request management employed in this server is

based upon the 1 dispatcher/N workers architecture, as outlined by this [2] article. In this
architecture, a single dispatcher thread monitors the sockets for IO events, while the actual
handling of requests is performed by multiple worker threads.

Other possible architectures include N dispatchers/no workers and M dispatchers/N
workers. Only the latter solution has obvious benefits, but the implementation complexity
and the practical efficiency of the solution with a single dispatcher prevented us from
choosing that architecture.

The low level input-output layer consists of a single separate Listener thread that

monitors all the TCP/IP sockets used by the server. These include two types of sockets:

� Listening sockets - the server’s sockets bound to certain ports – these accept

incoming connections
� Client sockets - the sockets representing established connections to the clients.

All sockets used by the server are in the non-blocking state.

While the Listener thread is in the monitoring state, it does not consume any

processor cycles, as it is placed in a blocking state waiting for some external event to interrupt
it. When the monitoring thread detectes activity on any of the sockets (such as an incoming
connection, a terminated connection, incoming data or socket ready to accept outgoing data),
it dispatches a task to handle that event in a separate worker thread. All such tasks are handled
by the proper Protocol class which is used to communicate over the given socket.

The handling of socket events is illustrated in the sequence diagram below.

 5

Listener ConnectionManager

Client

new connection

acceptConnection()

Client()

add(client)

clientId

ProtocolgetProtocol()

getProtocol()

onConnect()

incoming data

acceptInput()

ThreadPool

getProtocol()

execute(protocol)

run()

onDataAvailable()

outgoing data

A worker thread is assigned a new job.

Once the job is finished, the thread awaits new jobs.

disconnect

acceptInput()

getProtocol()

execute(protocol) run()

onDataAvailable()

onDisconnect()

IOExceptiondisconnect()

disconnect()

onDisconnect()

remove()

A disconnection can only be
detected by reading from the input
stream, that is why the whole
procedure is similar to reading
incoming data.

3.3.1. Thread management
All incoming requests are handled by separate worker threads, which allows the

Listener thread to quickly return to its primary task of monitoring socket activity. The task
of managing the threads is given to a standard Java package java.util.concurrent,
which provides some typical mechanisms for handling multiple threads.

The server keeps a pool of worker threads (with a configurable maximum) and assigns
incoming jobs to free worker threads as they come by. If no free thread is currently available,

 6

a new thread is created or, if the pool size limit doesn’t allow it, the job is executed in the
Listener thread.

This approach minimizes the delay associated with creation of new threads for handling
jobs, and also minimizes the memory usage of having a separate thread for each connected
client.

3.3.2. Data flow management
The server application needs to cope with situations when there is more incoming data

than it can handle and when it wants to send more outgoing data than the connected client can
accept (or the transport layer can transmit). As the server operates solely on non-blocking
sockets, the application must provide its own flow handling routines.

The solution employed in this server involves two methods of the Protocol class:
onDataAvailable() and onDataWritable(), and two states: read and write
interests.

When the Protocol is ready to accept more incoming data, it enables its read interest.
When new data arrives, the read interest is automatically disabled so that the Protocol has
to explicitly enable it to receive more data, and then the onDataAvailable() method is
called.

When the Protocol has some data to send it should enable its write interest. Once the
Listener detects that the socket is ready for sending data, it will first disable the write interest
and then call the onDataWritable() method.

3.4. Application level protocol
The protocol used by the wavu mobile client is called the Compact Message Exchange

Protocol (CMEP). It has been designed specifically for the needs of a high-latency, low-
bandwidth environment like the GPRS network. A detailed description of this protocol is
available in Appendix A.

3.5. Service management
The lifecycle of application services is given in the diagram below:

 7

ServiceManagerClient

PrivateService

Protocol

getPrivateService()

startPrivateService

new PrivateService()

start()

onStart()

performSomeOperations()

request

request getPrivateService()

isAlreadyStarted()

result

isAlreadyStarted()

serviceservice

service

performSomeOperations()

result

disconnect

onDisconnect()

stop()

onStop()

4. Testing methodology and results
The low level communication subsystem of the server has been tested to find out how

the server behaves under different load conditions and thread pool sizes.

4.1. Methodology
The tests have been conducted using ApacheBench, Version 2.0.40-dev, a

tool being part of the Apache httpd2 web server. In order to test the server using the HTTP

 8

protocol, a very simple class that understands this protocol was implemented using the
Protocol base class. The operation of this class is as follows:

1. Accept a new connection.
2. Read and discard all data until an empty line is encountered.
3. Output a simple HTTP/1.0 200 OK header and some content whose length is

equal to 33712 bytes.
4. Terminate the connection.

The server has been restarted after each test, except for the tests which were marked as

conducted on a “warm” server. The server and the testing program were run on separate
machines communication over IPv4 TCP protocol.

4.2. Results

Reqs Conc. Pool size MaxThreads 50% 66% 75% 80% 90% 95% 98% 100% Total

100 1 1024 5 4 5 5 5 8 16 29 75 656
100 1 1024 5 4 4 4 4 5 10 14 76 550
100 2 1024 6 4 5 5 6 10 16 30 73 686
100 2 1024 6 8 10 13 14 19 21 76 102 579
100 20 1024 9 80 96 118 149 154 156 171 190 529
400 50 1024 10 274 283 288 293 444 492 531 559 2475
400 50 1024 13 260 264 267 270 319 331 399 414 2144

100 1 5 5 4 5 5 6 20 24 40 75 720
100 2 5 5 9 13 16 18 29 62 94 98 805
100 20 5 5 100 120 146 149 171 181 193 202 691
400 50 5 5 257 261 263 264 268 271 276 343 2133

The columns have the following meaning:

1. Reqs – total number of requests submitted to the server.
2. Conc. – number of multiple requests that were made
3. Pool size – maximum allowed number of threads to be created by the

server
4. MaxThreads – actual maximum number of threads that the server created
5. 50%…100% - indicate the percentage of requests that were completed in a

certain time interval given in milliseconds
6. Total – the total time it took to complete all the requests

The rows marked in grey represent the data gathered from a test which has been

conducted without prior restarting of the server – a so-called “hot” run. The primary
difference between a “cold” and a “hot” run is that in the former case, the worker threads need
to be started before the server can service the requests, while in the latter the threads are
already available.

 9

Cold versus hot run

0

0,5

1

1,5

2

2,5

100/1 100/2 400/50

requests/concurrency

Ti
m

e
[s

]

"cold"
"hot"

Mean time per request vs used threads

0

100

200

300

400

500

600

4 5 6 7 8 9 10 11 12 13 14

Threads

Ti
m

e
[m

s]

4.3. Conclusions
Two conclusions can be drawn from the diagrams above.
First of all, as can be seen from the first diagram, starting a new thread is a time-

consuming process. That is why a test conducted on an already “warmed-up” server gives
better results than on a freshly restarted one.

The second diagram presents the fact that there is a certain number of threads that leads
to the fastest processing of incoming requests. This number obviously varies from system to
system, as it depends on the system’s memory and processor resources.

5. References
1. “The Java ME Platform”,

http://java.sun.com/javame/index.jsp

 10

http://java.sun.com/javame/index.jsp

2. “Building Highly Scalable Servers with Java NIO”,
http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html

3. “Java theory and practice: Thread pools and work queues”,
http://www-128.ibm.com/developerworks/library/j-jtp0730.html

 11

http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html
http://www-128.ibm.com/developerworks/library/j-jtp0730.html

	Table of contents
	1. Introduction
	2. Project objectives
	3. Server design
	3.1. Technologies used
	3.2. Overall server structure
	3.3. Low level IO layer
	3.3.1. Thread management
	3.3.2. Data flow management

	3.4. Application level protocol
	3.5. Service management
	4. Testing methodology and results
	4.1. Methodology
	4.2. Results
	4.3. Conclusions

	5. References

